ترغب بنشر مسار تعليمي؟ اضغط هنا

Fluorescence-detected Fourier transform electronic spectroscopy by phase-tagged photon counting

182   0   0.0 ( 0 )
 نشر من قبل Andrew Marcus
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Fluorescence-detected Fourier transform (FT) spectroscopy is a technique in which the relative paths of an optical interferometer are controlled to excite a material sample, and the ensuing fluorescence is detected as a function of the interferometer path delay and relative phase. A common approach to enhance the signal-to-noise ratio in these experiments is to apply a continuous phase sweep to the relative optical path, and to detect the resulting modulated fluorescence using a phase-sensitive lock-in amplifier. In many important situations, the fluorescence signal is too weak to be measured using a lock-in amplifier, so that photon counting techniques are preferred. Here we introduce an approach to low-signal fluorescence-detected FT spectroscopy, in which individual photon counts are assigned to a modulated interferometer phase (phase-tagged photon counting, or PTPC), and the resulting data are processed to construct optical spectra. We studied the fluorescence signals of a molecular sample excited resonantly by a pulsed coherent laser over a range of photon flux and visibility levels. We compare the performance of PTPC to standard lock-in detection methods and establish the range of signal parameters over which meaningful measurements can be carried out. We find that PTPC generally outperforms the lock-in detection method, with the dominant source of measurement uncertainty being associated with the statistics of the finite number of samples of the photon detection rate.



قيم البحث

اقرأ أيضاً

We report on the first demonstration of fluorescence detection using single-photon avalanche photodiodes (SPADs) monolithically integrated with a microfabricated surface ion trap. The SPADs are positioned below the trapping positions of the ions, and designed to detect 370 nm photons emitted from single $^{174}$Yb$^+$ and $^{171}$Yb$^+$ ions. We achieve an ion/no-ion detection fidelity for $^{174}$Yb$^+$ of 0.99 with an average detection window of 7.7(1) ms. We report a dark count rate as low as 1.2 kHz at room temperature operation. The fidelity is limited by laser scatter, dark counts, and heating that prevents holding the ion directly above the SPAD. We measure count rates from each of the contributing sources and fluorescence as a function of ion position. Based on the active detector area and using the ion as a calibrated light source we estimate a SPAD quantum efficiency of 24$pm$1%.
A combination of spatial interference patterns and spectral interferometry are used to find the global phase for non-collinear two-dimensional Fourier-transform (2DFT) spectra. Results are compared with those using the spectrally resolved transient a bsorption (STRA) method to find the global phase when excitation is with co-linear polarization. Additionally cross-linear polarized 2DFT spectra are correctly phased using the all-optical technique, where the SRTA is not applicable.
We have constructed a Fourier-transform spectrometer (FTS) operating between 50 and 330 GHz with minimum volume (355 x260 x64 mm) and weight (13 lbs) while maximizing optical throughput (100 $mathrm{mm}^2$ sr) and optimizing the spectral resolution ( 4 GHz). This FTS is designed as a polarizing Martin-Puplett interferometer with unobstructed input and output in which both input polarizations undergo interference. The instrument construction is simple with mirrors milled on the box walls and one motorized stage as the single moving element. We characterize the performance of the FTS, compare the measurements to an optical simulation, and discuss features that relate to details of the FTS design. The simulation is also used to determine the tolerance of optical alignments for the required specifications. We detail the FTS mechanical design and provide the control software as well as the analysis code online.
Coherent extreme ultraviolet (XUV) radiation produced by table-top high-harmonic generation (HHG) sources provides a wealth of possibilities in research areas ranging from attosecond physics to high resolution coherent imaging. However, it remains ch allenging to fully exploit the coherence of such sources for interferometry and Fourier transform spectroscopy (FTS). This is due to the need for a measurement system that is stable at the level of a wavelength fraction, yet allowing a controlled scanning of time delays. Here we demonstrate XUV interferometry and FTS in the 17-55 nm wavelength range using an ultrastable common-path interferometer suitable for high-intensity laser pulses that drive the HHG process. This approach enables the generation of fully coherent XUV pulse pairs with sub-attosecond timing variation, tunable time delay and a clean Gaussian spatial mode profile. We demonstrate the capabilities of our XUV interferometer by performing spatially resolved FTS on a thin film composed of titanium and silicon nitride.
The control of the optical quality of a laser beam requires a complex amplitude measurement able to deal with strong modulus variations and potentially highly perturbed wavefronts. The method proposed here consists in an extension of phase diversity to complex amplitude measurements that is effective for highly perturbed beams. Named CAMELOT for Complex Amplitude MEasurement by a Likelihood Optimization Tool, it relies on the acquisition and processing of few images of the beam section taken along the optical path. The complex amplitude of the beam is retrieved from the images by the minimization of a Maximum a Posteriori error metric between the images and a model of the beam propagation. The analytical formalism of the method and its experimental validation are presented. The modulus of the beam is compared to a measurement of the beam profile, the phase of the beam is compared to a conventional phase diversity estimate. The precision of the experimental measurements is investigated by numerical simulations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا