ﻻ يوجد ملخص باللغة العربية
We have constructed a Fourier-transform spectrometer (FTS) operating between 50 and 330 GHz with minimum volume (355 x260 x64 mm) and weight (13 lbs) while maximizing optical throughput (100 $mathrm{mm}^2$ sr) and optimizing the spectral resolution (4 GHz). This FTS is designed as a polarizing Martin-Puplett interferometer with unobstructed input and output in which both input polarizations undergo interference. The instrument construction is simple with mirrors milled on the box walls and one motorized stage as the single moving element. We characterize the performance of the FTS, compare the measurements to an optical simulation, and discuss features that relate to details of the FTS design. The simulation is also used to determine the tolerance of optical alignments for the required specifications. We detail the FTS mechanical design and provide the control software as well as the analysis code online.
Kinetic inductance in thin film superconductors has been used as the basis for low-temperature, low-noise photon detectors. In particular thin films such as NbTiN, TiN, NbN, the kinetic inductance effect is strongly non-linear in the applied current,
Large imaging arrays of detectors at millimeter and submillimeter wavelengths have applications that include measurements of the faint polarization signal in the Cosmic Microwave Background (CMB), and submillimeter astrophysics. We are developing pla
A systematic programme of calibration observations was carried out to monitor the performance of the SPIRE FTS instrument on board the Herschel Space Observatory. Observations of planets (including the prime point-source calibrator, Uranus), asteroid
The Far-Infrared Surveyor (FIS) onboard the AKARI satellite has a spectroscopic capability provided by a Fourier transform spectrometer (FIS-FTS). FIS-FTS is the first space-borne imaging FTS dedicated to far-infrared astronomical observations. We de
Recent advances in optical metasurfaces enable control of the wavefront, polarization and dispersion of optical waves beyond the capabilities of conventional diffractive optics. An optical design space that is poised to highly benefit from these deve