ﻻ يوجد ملخص باللغة العربية
We report on the first demonstration of fluorescence detection using single-photon avalanche photodiodes (SPADs) monolithically integrated with a microfabricated surface ion trap. The SPADs are positioned below the trapping positions of the ions, and designed to detect 370 nm photons emitted from single $^{174}$Yb$^+$ and $^{171}$Yb$^+$ ions. We achieve an ion/no-ion detection fidelity for $^{174}$Yb$^+$ of 0.99 with an average detection window of 7.7(1) ms. We report a dark count rate as low as 1.2 kHz at room temperature operation. The fidelity is limited by laser scatter, dark counts, and heating that prevents holding the ion directly above the SPAD. We measure count rates from each of the contributing sources and fluorescence as a function of ion position. Based on the active detector area and using the ion as a calibrated light source we estimate a SPAD quantum efficiency of 24$pm$1%.
As one of the most striking features of quantum mechanics, quantum correlations are at the heart of quantum information science. Detection of correlations usually requires access to all the correlated subsystems. However, in many realistic scenarios
We describe the design, fabrication and testing of a surface-electrode ion trap, which incorporates microwave waveguides, resonators and coupling elements for the manipulation of trapped ion qubits using near-field microwaves. The trap is optimised t
We report high-fidelity state readout of a trapped ion qubit using a trap-integrated photon detector. We determine the hyperfine qubit state of a single $^9$Be$^+$ ion held in a surface-electrode rf ion trap by counting state-dependent ion fluorescen
An experiment is performed where a single rubidium atom trapped within a high-finesse optical cavity emits two independently triggered entangled photons. The entanglement is mediated by the atom and is characterized both by a Bell inequality violatio
Cross-correlation signals are recorded from fluorescence photons scattered in free space off a trapped ion structure. The analysis of the signal allows for unambiguously revealing the spatial frequency, thus the distance, as well as the spatial align