ترغب بنشر مسار تعليمي؟ اضغط هنا

On the role of data in PAC-Bayes bounds

98   0   0.0 ( 0 )
 نشر من قبل Daniel Roy
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

The dominant term in PAC-Bayes bounds is often the Kullback--Leibler divergence between the posterior and prior. For so-called linear PAC-Bayes risk bounds based on the empirical risk of a fixed posterior kernel, it is possible to minimize the expected value of the bound by choosing the prior to be the expected posterior, which we call the oracle prior on the account that it is distribution dependent. In this work, we show that the bound based on the oracle prior can be suboptimal: In some cases, a stronger bound is obtained by using a data-dependent oracle prior, i.e., a conditional expectation of the posterior, given a subset of the training data that is then excluded from the empirical risk term. While using data to learn a prior is a known heuristic, its essential role in optimal bounds is new. In fact, we show that using data can mean the difference between vacuous and nonvacuous bounds. We apply this new principle in the setting of nonconvex learning, simulating data-dependent oracle priors on MNIST and Fashion MNIST with and without held-out data, and demonstrating new nonvacuous bounds in both cases.

قيم البحث

اقرأ أيضاً

89 - Tianyu Liu , Jie Lu , Zheng Yan 2021
By leveraging experience from previous tasks, meta-learning algorithms can achieve effective fast adaptation ability when encountering new tasks. However it is unclear how the generalization property applies to new tasks. Probably approximately corre ct (PAC) Bayes bound theory provides a theoretical framework to analyze the generalization performance for meta-learning. We derive three novel generalisation error bounds for meta-learning based on PAC-Bayes relative entropy bound. Furthermore, using the empirical risk minimization (ERM) method, a PAC-Bayes bound for meta-learning with data-dependent prior is developed. Experiments illustrate that the proposed three PAC-Bayes bounds for meta-learning guarantee a competitive generalization performance guarantee, and the extended PAC-Bayes bound with data-dependent prior can achieve rapid convergence ability.
We present a new PAC-Bayesian generalization bound. Standard bounds contain a $sqrt{L_n cdot KL/n}$ complexity term which dominates unless $L_n$, the empirical error of the learning algorithms randomized predictions, vanishes. We manage to replace $L _n$ by a term which vanishes in many more situations, essentially whenever the employed learning algorithm is sufficiently stable on the dataset at hand. Our new bound consistently beats state-of-the-art bounds both on a toy example and on UCI datasets (with large enough $n$). Theoretically, unlike existing bounds, our new bound can be expected to converge to $0$ faster whenever a Bernstein/Tsybakov condition holds, thus connecting PAC-Bayesian generalization and {em excess risk/} bounds---for the latter it has long been known that faster convergence can be obtained under Bernstein conditions. Our main technical tool is a new concentration inequality which is like Bernsteins but with $X^2$ taken outside its expectation.
Existing guarantees in terms of rigorous upper bounds on the generalization error for the original random forest algorithm, one of the most frequently used machine learning methods, are unsatisfying. We discuss and evaluate various PAC-Bayesian appro aches to derive such bounds. The bounds do not require additional hold-out data, because the out-of-bag samples from the bagging in the training process can be exploited. A random forest predicts by taking a majority vote of an ensemble of decision trees. The first approach is to bound the error of the vote by twice the error of the corresponding Gibbs classifier (classifying with a single member of the ensemble selected at random). However, this approach does not take into account the effect of averaging out of errors of individual classifiers when taking the majority vote. This effect provides a significant boost in performance when the errors are independent or negatively correlated, but when the correlations are strong the advantage from taking the majority vote is small. The second approach based on PAC-Bayesian C-bounds takes dependencies between ensemble members into account, but it requires estimating correlations between the errors of the individual classifiers. When the correlations are high or the estimation is poor, the bounds degrade. In our experiments, we compute generalization bounds for random forests on various benchmark data sets. Because the individual decision trees already perform well, their predictions are highly correlated and the C-bounds do not lead to satisfactory results. For the same reason, the bounds based on the analysis of Gibbs classifiers are typically superior and often reasonably tight. Bounds based on a validation set coming at the cost of a smaller training set gave better performance guarantees, but worse performance in most experiments.
We develop a framework for derandomising PAC-Bayesian generalisation bounds achieving a margin on training data, relating this process to the concentration-of-measure phenomenon. We apply these tools to linear prediction, single-hidden-layer neural n etworks with an unusual erf activation function, and deep ReLU networks, obtaining new bounds. The approach is also extended to the idea of partial-derandomisation where only some layers are derandomised and the others are stochastic. This allows empirical evaluation of single-hidden-layer networks on more complex datasets, and helps bridge the gap between generalisation bounds for non-stochastic deep networks and those for randomised deep networks as generally examined in PAC-Bayes.
The developments of Rademacher complexity and PAC-Bayesian theory have been largely independent. One exception is the PAC-Bayes theorem of Kakade, Sridharan, and Tewari (2008), which is established via Rademacher complexity theory by viewing Gibbs cl assifiers as linear operators. The goal of this paper is to extend this bridge between Rademacher complexity and state-of-the-art PAC-Bayesian theory. We first demonstrate that one can match the fast rate of Catonis PAC-Bayes bounds (Catoni, 2007) using shifted Rademacher processes (Wegkamp, 2003; Lecu{e} and Mitchell, 2012; Zhivotovskiy and Hanneke, 2018). We then derive a new fast-rate PAC-Bayes bound in terms of the flatness of the empirical risk surface on which the posterior concentrates. Our analysis establishes a new framework for deriving fast-rate PAC-Bayes bounds and yields new insights on PAC-Bayesian theory.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا