ﻻ يوجد ملخص باللغة العربية
We study critical Fermi surfaces in generic dimensions arising from coupling finite-density fermions with transverse gauge fields, by applying the dimensional regularization scheme developed previously [Phys. Rev. B 92, 035141 (2015)]. We consider the cases of $U(1)$ and $U(1)times U(1)$ transverse gauge couplings, and extract the nature of the renormalization group (RG) flow fixed points as well as the critical scalings. Our analysis allows us to treat a critical Fermi surface of a generic dimension $m$ perturbatively in an expansion parameter $epsilon =left (2-m right ) /left (m+1 right).$ One of our key results is that although the two-loop corrections do not alter the existence of an RG flow fixed line for certain $U(1)times U(1)$ theories, which was identified earlier for $m=1$ at one-loop order, the third-order diagrams do. However, this fixed line feature is also obtained for $m>1$, where the answer is one-loop exact due to UV/IR mixing.
We describe the large $N$ saddle point, and the structure of fluctuations about the saddle point, of a theory containing a sharp, critical Fermi surface in two spatial dimensions. The theory describes the onset of Ising order in a Fermi liquid, and c
At certain quantum critical points in metals an entire Fermi surface may disappear. A crucial question is the nature of the electronic excitations at the critical point. Here we provide arguments showing that at such quantum critical points the Fermi
Recent studies of the global phase diagram of quantum-critical heavy-fermion metals prompt consideration of the interplay between the Kondo interactions and quantum fluctuations of the local moments alone. Toward this goal, we study a Bose-Fermi Kond
We define an attractive gravity probe surface (AGPS) as a compact 2-surface $S_alpha$ with positive mean curvature $k$ satisfying $r^a D_a k / k^2 ge alpha$ (for a constant $alpha>-1/2$) in the local inverse mean curvature flow, where $r^a D_a k$ is
We compute the topological entanglement entropy for a large set of lattice models in $d$-dimensions. It is well known that many such quantum systems can be constructed out of lattice gauge models. For dimensionality higher than two, there are general