ترغب بنشر مسار تعليمي؟ اضغط هنا

Fast Distributionally Robust Learning with Variance Reduced Min-Max Optimization

125   0   0.0 ( 0 )
 نشر من قبل Yaodong Yu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Distributionally robust supervised learning (DRSL) is emerging as a key paradigm for building reliable machine learning systems for real-world applications -- reflecting the need for classifiers and predictive models that are robust to the distribution shifts that arise from phenomena such as selection bias or nonstationarity. Existing algorithms for solving Wasserstein DRSL -- one of the most popular DRSL frameworks based around robustness to perturbations in the Wasserstein distance -- involve solving complex subproblems or fail to make use of stochastic gradients, limiting their use in large-scale machine learning problems. We revisit Wasserstein DRSL through the lens of min-max optimization and derive scalable and efficiently implementable stochastic extra-gradient algorithms which provably achieve faster convergence rates than existing approaches. We demonstrate their effectiveness on synthetic and real data when compared to existing DRSL approaches. Key to our results is the use of variance reduction and random reshuffling to accelerate stochastic min-max optimization, the analysis of which may be of independent interest.



قيم البحث

اقرأ أيضاً

This paper focuses on stochastic methods for solving smooth non-convex strongly-concave min-max problems, which have received increasing attention due to their potential applications in deep learning (e.g., deep AUC maximization). However, most of th e existing algorithms are slow in practice, and their analysis revolves around the convergence to a nearly stationary point. We consider leveraging the Polyak-L ojasiewicz (PL) condition to design faster stochastic algorithms with stronger convergence guarantee. Although PL condition has been utilized for designing many stochastic minimization algorithms, their applications for non-convex min-max optimization remains rare. In this paper, we propose and analyze proximal epoch-based methods, and establish fast convergence in terms of both {bf the primal objective gap and the duality gap}. Our analysis is interesting in threefold: (i) it is based on a novel Lyapunov function that consists of the primal objective gap and the duality gap of a regularized function; (ii) it only requires a weaker PL condition for establishing the primal objective convergence than that required for the duality gap convergence; (iii) it yields the optimal dependence on the accuracy level $epsilon$, i.e., $O(1/epsilon)$. We also make explicit the dependence on the problem parameters and explore regions of weak convexity parameter that lead to improved dependence on condition numbers. Experiments on deep AUC maximization demonstrate the effectiveness of our methods. Our method (MaxAUC) achieved an AUC of 0.922 on private testing set on {bf CheXpert competition}.
We resolve the min-max complexity of distributed stochastic convex optimization (up to a log factor) in the intermittent communication setting, where $M$ machines work in parallel over the course of $R$ rounds of communication to optimize the objecti ve, and during each round of communication, each machine may sequentially compute $K$ stochastic gradient estimates. We present a novel lower bound with a matching upper bound that establishes an optimal algorithm.
In recent years, stochastic variance reduction algorithms have attracted considerable attention for minimizing the average of a large but finite number of loss functions. This paper proposes a novel Riemannian extension of the Euclidean stochastic va riance reduced gradient (R-SVRG) algorithm to a manifold search space. The key challenges of averaging, adding, and subtracting multiple gradients are addressed with retraction and vector transport. For the proposed algorithm, we present a global convergence analysis with a decaying step size as well as a local convergence rate analysis with a fixed step size under some natural assumptions. In addition, the proposed algorithm is applied to the computation problem of the Riemannian centroid on the symmetric positive definite (SPD) manifold as well as the principal component analysis and low-rank matrix completion problems on the Grassmann manifold. The results show that the proposed algorithm outperforms the standard Riemannian stochastic gradient descent algorithm in each case.
218 - Qi Qi , Zhishuai Guo , Yi Xu 2020
In this paper, we propose a practical online method for solving a distributionally robust optimization (DRO) for deep learning, which has important applications in machine learning for improving the robustness of neural networks. In the literature, m ost methods for solving DRO are based on stochastic primal-dual methods. However, primal-dual methods for deep DRO suffer from several drawbacks: (1) manipulating a high-dimensional dual variable corresponding to the size of data is time expensive; (2) they are not friendly to online learning where data is coming sequentially. To address these issues, we transform the min-max formulation into a minimization formulation and propose a practical duality-free online stochastic method for solving deep DRO with KL divergence regularization. The proposed online stochastic method resembles the practical stochastic Nesterovs method in several perspectives that are widely used for learning deep neural networks. Under a Polyak-Lojasiewicz (PL) condition, we prove that the proposed method can enjoy an optimal sample complexity without any requirements on large batch size. Of independent interest, the proposed method can be also used for solving a family of stochastic compositional problems.
We propose kernel distributionally robust optimization (Kernel DRO) using insights from the robust optimization theory and functional analysis. Our method uses reproducing kernel Hilbert spaces (RKHS) to construct a wide range of convex ambiguity set s, which can be generalized to sets based on integral probability metrics and finite-order moment bounds. This perspective unifies multiple existing robust and stochastic optimization methods. We prove a theorem that generalizes the classical duality in the mathematical problem of moments. Enabled by this theorem, we reformulate the maximization with respect to measures in DRO into the dual program that searches for RKHS functions. Using universal RKHSs, the theorem applies to a broad class of loss functions, lifting common limitations such as polynomial losses and knowledge of the Lipschitz constant. We then establish a connection between DRO and stochastic optimization with expectation constraints. Finally, we propose practical algorithms based on both batch convex solvers and stochastic functional gradient, which apply to general optimization and machine learning tasks.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا