ﻻ يوجد ملخص باللغة العربية
We discuss a number of general constructions concerning additive $ C^* $-categories, focussing in particular on establishing the existence of bicolimits. As an illustration of our results we show that balanced tensor products of module categories over $ C^* $-tensor categories exist without any finiteness assumptions.
We provide definitions for strict involutive higher categories (a vertical categorification of dagger categories), strict higher C*-categories and higher Fell bundles (over arbitrary involutive higher topological categories). We put forward a proposa
C*-categories are essentially norm-closed *-categories of bounded linear operators between Hilbert spaces. The purpose of this work is to identify suitable axioms defining Krein C*-categories, i.e. those categories that play the role of C*-categories
A bicommutant category is a higher categorical analog of a von Neumann algebra. We study the bicommutant categories which arise as the commutant $mathcal{C}$ of a fully faithful representation $mathcal{C}tooperatorname{Bim}(R)$ of a unitary fusion ca
We call a von Neumann algebra with finite dimensional center a multifactor. We introduce an invariant of bimodules over $rm II_1$ multifactors that we call modular distortion, and use it to formulate two classification results. We first classify fi
Given a higher-rank graph $Lambda$, we investigate the relationship between the cohomology of $Lambda$ and the cohomology of the associated groupoid $G_Lambda$. We define an exact functor between the abelian category of right modules over a higher-ra