ﻻ يوجد ملخص باللغة العربية
C*-categories are essentially norm-closed *-categories of bounded linear operators between Hilbert spaces. The purpose of this work is to identify suitable axioms defining Krein C*-categories, i.e. those categories that play the role of C*-categories whenever Hilbert spaces are replaced by more general indefinite inner product Krein spaces, and provide some basic examples. Finally we provide a Gelfand-Naimark representation theorem for Krein C*-algebras and Krein C*-categories.
We discuss a number of general constructions concerning additive $ C^* $-categories, focussing in particular on establishing the existence of bicolimits. As an illustration of our results we show that balanced tensor products of module categories ove
We provide definitions for strict involutive higher categories (a vertical categorification of dagger categories), strict higher C*-categories and higher Fell bundles (over arbitrary involutive higher topological categories). We put forward a proposa
We introduce a notion of Krein C*-module over a C*-algebra and more generally over a Krein C*-algebra. Some properties of Krein C*-modules and their categories are investigated.
A Banach involutive algebra is called a Krein C*-algebra if there is a fundamental symmetry (an involutive automorphism of period 2) such that the C*-property is satisfied when the original involution is replaced with the new one obtained by composin
A bicommutant category is a higher categorical analog of a von Neumann algebra. We study the bicommutant categories which arise as the commutant $mathcal{C}$ of a fully faithful representation $mathcal{C}tooperatorname{Bim}(R)$ of a unitary fusion ca