ﻻ يوجد ملخص باللغة العربية
A bicommutant category is a higher categorical analog of a von Neumann algebra. We study the bicommutant categories which arise as the commutant $mathcal{C}$ of a fully faithful representation $mathcal{C}tooperatorname{Bim}(R)$ of a unitary fusion category $mathcal{C}$. Using results of Izumi, Popa, and Tomatsu about existence and uniqueness of representations of unitary (multi)fusion categories, we prove that if $mathcal{C}$ and $mathcal{D}$ are Morita equivalent unitary fusion categories, then their commutant categories $mathcal{C}$ and $mathcal{D}$ are equivalent as bicommutant categories. In particular, they are equivalent as tensor categories: [ Big(,,mathcal{C},,simeq_{text{Morita}},,mathcal{D},,Big) qquadLongrightarrowqquad Big(,,mathcal{C},,simeq_{text{tensor}},,mathcal{D},,Big). ] This categorifies the well-known result according to which the commutants (in some representations) of Morita equivalent finite dimensional $rm C^*$-algebras are isomorphic von Neumann algebras, provided the representations are `big enough. We also introduce a notion of positivity for bi-involutive tensor categories. For dagger categories, positivity is a property (the property of being a $rm C^*$-category). But for bi-involutive tensor categories, positivity is extra structure. We show that unitary fusion categories and $operatorname{Bim}(R)$ admit distinguished positive structures, and that fully faithful representations $mathcal{C}tooperatorname{Bim}(R)$ automatically respect these positive structures.
We call a von Neumann algebra with finite dimensional center a multifactor. We introduce an invariant of bimodules over $rm II_1$ multifactors that we call modular distortion, and use it to formulate two classification results. We first classify fi
The main result of this paper establishes a bijection between the set of equivalence classes of simple transitive $2$-representations with a fixed apex $mathcal{J}$ of a fiat $2$-category $cC$ and the set of equivalence classes of faithful simple tra
We discuss a number of general constructions concerning additive $ C^* $-categories, focussing in particular on establishing the existence of bicolimits. As an illustration of our results we show that balanced tensor products of module categories ove
C*-categories are essentially norm-closed *-categories of bounded linear operators between Hilbert spaces. The purpose of this work is to identify suitable axioms defining Krein C*-categories, i.e. those categories that play the role of C*-categories
Given a higher-rank graph $Lambda$, we investigate the relationship between the cohomology of $Lambda$ and the cohomology of the associated groupoid $G_Lambda$. We define an exact functor between the abelian category of right modules over a higher-ra