ﻻ يوجد ملخص باللغة العربية
The recent GRAPH-BERT model introduces a new approach to learning graph representations merely based on the attention mechanism. GRAPH-BERT provides an opportunity for transferring pre-trained models and learned graph representations across different tasks within the same graph dataset. In this paper, we will further investigate the graph-to-graph transfer of a universal GRAPH-BERT for graph representation learning across different graph datasets, and our proposed model is also referred to as the G5 for simplicity. Many challenges exist in learning G5 to adapt the distinct input and output configurations for each graph data source, as well as the information distributions differences. G5 introduces a pluggable model architecture: (a) each data source will be pre-processed with a unique input representation learning component; (b) each output application task will also have a specific functional component; and (c) all such diverse input and output components will all be conjuncted with a universal GRAPH-BERT core component via an input size unification layer and an output representation fusion layer, respectively. The G5 model removes the last obstacle for cross-graph representation learning and transfer. For the graph sources with very sparse training data, the G5 model pre-trained on other graphs can still be utilized for representation learning with necessary fine-tuning. Whats more, the architecture of G5 also allows us to learn a supervised functional classifier for data sources without any training data at all. Such a problem is also named as the Apocalypse Learning task in this paper. Two different label reasoning strategies, i.e., Cross-Source Classification Consistency Maximization (CCCM) and Cross-Source Dynamic Routing (CDR), are introduced in this paper to address the problem.
Graph distance metric learning serves as the foundation for many graph learning problems, e.g., graph clustering, graph classification and graph matching. Existing research works on graph distance metric (or graph kernels) learning fail to maintain t
Deep neural networks, while generalize well, are known to be sensitive to small adversarial perturbations. This phenomenon poses severe security threat and calls for in-depth investigation of the robustness of deep learning models. With the emergence
We show that the classification performance of graph convolutional networks (GCNs) is related to the alignment between features, graph, and ground truth, which we quantify using a subspace alignment measure (SAM) corresponding to the Frobenius norm o
Can neural networks learn to compare graphs without feature engineering? In this paper, we show that it is possible to learn representations for graph similarity with neither domain knowledge nor supervision (i.e. feature engineering or labeled graph
Graphs are widely used as a popular representation of the network structure of connected data. Graph data can be found in a broad spectrum of application domains such as social systems, ecosystems, biological networks, knowledge graphs, and informati