ﻻ يوجد ملخص باللغة العربية
Graph distance metric learning serves as the foundation for many graph learning problems, e.g., graph clustering, graph classification and graph matching. Existing research works on graph distance metric (or graph kernels) learning fail to maintain the basic properties of such metrics, e.g., non-negative, identity of indiscernibles, symmetry and triangle inequality, respectively. In this paper, we will introduce a new graph neural network based distance metric learning approaches, namely GB-DISTANCE (GRAPH-BERT based Neural Distance). Solely based on the attention mechanism, GB-DISTANCE can learn graph instance representations effectively based on a pre-trained GRAPH-BERT model. Different from the existing supervised/unsupervised metrics, GB-DISTANCE can be learned effectively in a semi-supervised manner. In addition, GB-DISTANCE can also maintain the distance metric basic properties mentioned above. Extensive experiments have been done on several benchmark graph datasets, and the results demonstrate that GB-DISTANCE can out-perform the existing baseline methods, especially the recent graph neural network model based graph metrics, with a significant gap in computing the graph distance.
The recent GRAPH-BERT model introduces a new approach to learning graph representations merely based on the attention mechanism. GRAPH-BERT provides an opportunity for transferring pre-trained models and learned graph representations across different
Graph Neural Networks (GNNs) have achieved state-of-the-art results on many graph analysis tasks such as node classification and link prediction. However, important unsupervised problems on graphs, such as graph clustering, have proved more resistant
Driven by the outstanding performance of neural networks in the structured Euclidean domain, recent years have seen a surge of interest in developing neural networks for graphs and data supported on graphs. The graph is leveraged at each layer of the
Graph neural networks (GNNs) can process graphs of different sizes, but their ability to generalize across sizes, specifically from small to large graphs, is still not well understood. In this paper, we identify an important type of data where genera
Deep Graph Neural Networks (GNNs) show promising performance on a range of graph tasks, yet at present are costly to run and lack many of the optimisations applied to DNNs. We show, for the first time, how to systematically quantise GNNs with minimal