ترغب بنشر مسار تعليمي؟ اضغط هنا

ClarQ: A large-scale and diverse dataset for Clarification Question Generation

344   0   0.0 ( 0 )
 نشر من قبل Vaibhav Kumar
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Question answering and conversational systems are often baffled and need help clarifying certain ambiguities. However, limitations of existing datasets hinder the development of large-scale models capable of generating and utilising clarification questions. In order to overcome these limitations, we devise a novel bootstrapping framework (based on self-supervision) that assists in the creation of a diverse, large-scale dataset of clarification questions based on post-comment tuples extracted from stackexchange. The framework utilises a neural network based architecture for classifying clarification questions. It is a two-step method where the first aims to increase the precision of the classifier and second aims to increase its recall. We quantitatively demonstrate the utility of the newly created dataset by applying it to the downstream task of question-answering. The final dataset, ClarQ, consists of ~2M examples distributed across 173 domains of stackexchange. We release this dataset in order to foster research into the field of clarification question generation with the larger goal of enhancing dialog and question answering systems.



قيم البحث

اقرأ أيضاً

Product descriptions on e-commerce websites often suffer from missing important aspects. Clarification question generation (CQGen) can be a promising approach to help alleviate the problem. Unlike traditional QGen assuming the existence of answers in the context and generating questions accordingly, CQGen mimics user behaviors of asking for unstated information. The generated CQs can serve as a sanity check or proofreading to help e-commerce merchant to identify potential missing information before advertising their product, and improve consumer experience consequently. Due to the variety of possible user backgrounds and use cases, the information need can be quite diverse but also specific to a detailed topic, while previous works assume generating one CQ per context and the results tend to be generic. We thus propose the task of Diverse CQGen and also tackle the challenge of specificity. We propose a new model named KPCNet, which generates CQs with Keyword Prediction and Conditioning, to deal with the tasks. Automatic and human evaluation on 2 datasets (Home & Kitchen, Office) showed that KPCNet can generate more specific questions and promote better group-level diversity than several competing baselines.
Recently, large-scale datasets have vastly facilitated the development in nearly all domains of Natural Language Processing. However, there is currently no cross-task dataset in NLP, which hinders the development of multi-task learning. We propose MA TINF, the first jointly labeled large-scale dataset for classification, question answering and summarization. MATINF contains 1.07 million question-answer pairs with human-labeled categories and user-generated question descriptions. Based on such rich information, MATINF is applicable for three major NLP tasks, including classification, question answering, and summarization. We benchmark existing methods and a novel multi-task baseline over MATINF to inspire further research. Our comprehensive comparison and experiments over MATINF and other datasets demonstrate the merits held by MATINF.
In the last few years, open-domain question answering (ODQA) has advanced rapidly due to the development of deep learning techniques and the availability of large-scale QA datasets. However, the current datasets are essentially designed for synchroni c document collections (e.g., Wikipedia). Temporal news collections such as long-term news archives spanning several decades, are rarely used in training the models despite they are quite valuable for our society. In order to foster the research in the field of ODQA on such historical collections, we present ArchivalQA, a large question answering dataset consisting of 1,067,056 question-answer pairs which is designed for temporal news QA. In addition, we create four subparts of our dataset based on the question difficulty levels and the containment of temporal expressions, which we believe could be useful for training or testing ODQA systems characterized by different strengths and abilities. The novel QA dataset-constructing framework that we introduce can be also applied to create datasets over other types of collections.
Answerer in Questioners Mind (AQM) is an information-theoretic framework that has been recently proposed for task-oriented dialog systems. AQM benefits from asking a question that would maximize the information gain when it is asked. However, due to its intrinsic nature of explicitly calculating the information gain, AQM has a limitation when the solution space is very large. To address this, we propose AQM+ that can deal with a large-scale problem and ask a question that is more coherent to the current context of the dialog. We evaluate our method on GuessWhich, a challenging task-oriented visual dialog problem, where the number of candidate classes is near 10K. Our experimental results and ablation studies show that AQM+ outperforms the state-of-the-art models by a remarkable margin with a reasonable approximation. In particular, the proposed AQM+ reduces more than 60% of error as the dialog proceeds, while the comparative algorithms diminish the error by less than 6%. Based on our results, we argue that AQM+ is a general task-oriented dialog algorithm that can be applied for non-yes-or-no responses.
A significant barrier to progress in data-driven approaches to building dialog systems is the lack of high quality, goal-oriented conversational data. To help satisfy this elementary requirement, we introduce the initial release of the Taskmaster-1 d ataset which includes 13,215 task-based dialogs comprising six domains. Two procedures were used to create this collection, each with unique advantages. The first involves a two-person, spoken Wizard of Oz (WOz) approach in which trained agents and crowdsourced workers interact to complete the task while the second is self-dialog in which crowdsourced workers write the entire dialog themselves. We do not restrict the workers to detailed scripts or to a small knowledge base and hence we observe that our dataset contains more realistic and diverse conversations in comparison to existing datasets. We offer several baseline models including state of the art neural seq2seq architectures with benchmark performance as well as qualitative human evaluations. Dialogs are labeled with API calls and arguments, a simple and cost effective approach which avoids the requirement of complex annotation schema. The layer of abstraction between the dialog model and the service provider API allows for a given model to interact with multiple services that provide similar functionally. Finally, the dataset will evoke interest in written vs. spoken language, discourse patterns, error handling and other linguistic phenomena related to dialog system research, development and design.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا