ترغب بنشر مسار تعليمي؟ اضغط هنا

Large-Scale Answerer in Questioners Mind for Visual Dialog Question Generation

66   0   0.0 ( 0 )
 نشر من قبل Sang-Woo Lee
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Answerer in Questioners Mind (AQM) is an information-theoretic framework that has been recently proposed for task-oriented dialog systems. AQM benefits from asking a question that would maximize the information gain when it is asked. However, due to its intrinsic nature of explicitly calculating the information gain, AQM has a limitation when the solution space is very large. To address this, we propose AQM+ that can deal with a large-scale problem and ask a question that is more coherent to the current context of the dialog. We evaluate our method on GuessWhich, a challenging task-oriented visual dialog problem, where the number of candidate classes is near 10K. Our experimental results and ablation studies show that AQM+ outperforms the state-of-the-art models by a remarkable margin with a reasonable approximation. In particular, the proposed AQM+ reduces more than 60% of error as the dialog proceeds, while the comparative algorithms diminish the error by less than 6%. Based on our results, we argue that AQM+ is a general task-oriented dialog algorithm that can be applied for non-yes-or-no responses.

قيم البحث

اقرأ أيضاً

Question answering and conversational systems are often baffled and need help clarifying certain ambiguities. However, limitations of existing datasets hinder the development of large-scale models capable of generating and utilising clarification que stions. In order to overcome these limitations, we devise a novel bootstrapping framework (based on self-supervision) that assists in the creation of a diverse, large-scale dataset of clarification questions based on post-comment tuples extracted from stackexchange. The framework utilises a neural network based architecture for classifying clarification questions. It is a two-step method where the first aims to increase the precision of the classifier and second aims to increase its recall. We quantitatively demonstrate the utility of the newly created dataset by applying it to the downstream task of question-answering. The final dataset, ClarQ, consists of ~2M examples distributed across 173 domains of stackexchange. We release this dataset in order to foster research into the field of clarification question generation with the larger goal of enhancing dialog and question answering systems.
To advance models of multimodal context, we introduce a simple yet powerful neural architecture for data that combines vision and natural language. The Bounding Boxes in Text Transformer (B2T2) also leverages referential information binding words to portions of the image in a single unified architecture. B2T2 is highly effective on the Visual Commonsense Reasoning benchmark (https://visualcommonsense.com), achieving a new state-of-the-art with a 25% relative reduction in error rate compared to published baselines and obtaining the best performance to date on the public leaderboard (as of May 22, 2019). A detailed ablation analysis shows that the early integration of the visual features into the text analysis is key to the effectiveness of the new architecture. A reference implementation of our models is provided (https://github.com/google-research/language/tree/master/language/question_answering/b2t2).
Multi-modal dialog modeling is of growing interest. In this work, we propose frameworks to resolve a specific case of multi-modal dialog generation that better mimics multi-modal dialog generation in the real world, where each dialog turn is associat ed with the visual context in which it takes place. Specifically, we propose to model the mutual dependency between text-visual features, where the model not only needs to learn the probability of generating the next dialog utterance given preceding dialog utterances and visual contexts, but also the probability of predicting the visual features in which a dialog utterance takes place, leading the generated dialog utterance specific to the visual context. We observe significant performance boosts over vanilla models when the mutual dependency between text and visual features is modeled. Code is available at https://github.com/ShannonAI/OpenViDial.
355 - Shiyue Zhang , Mohit Bansal 2019
Text-based Question Generation (QG) aims at generating natural and relevant questions that can be answered by a given answer in some context. Existing QG models suffer from a semantic drift problem, i.e., the semantics of the model-generated question drifts away from the given context and answer. In this paper, we first propose two semantics-enhanced rewards obtained from downstream question paraphrasing and question answering tasks to regularize the QG model to generate semantically valid questions. Second, since the traditional evaluation metrics (e.g., BLEU) often fall short in evaluating the quality of generated questions, we propose a QA-based evaluation method which measures the QG models ability to mimic human annotators in generating QA training data. Experiments show that our method achieves the new state-of-the-art performance w.r.t. traditional metrics, and also performs best on our QA-based evaluation metrics. Further, we investigate how to use our QG model to augment QA datasets and enable semi-supervised QA. We propose two ways to generate synthetic QA pairs: generate new questions from existing articles or collect QA pairs from new articles. We also propose two empirically effective strategies, a data filter and mixing mini-batch training, to properly use the QG-generated data for QA. Experiments show that our method improves over both BiDAF and BERT QA baselines, even without introducing new articles.
Scene-aware dialog systems will be able to have conversations with users about the objects and events around them. Progress on such systems can be made by integrating state-of-the-art technologies from multiple research areas including end-to-end dia log systems visual dialog, and video description. We introduce the Audio Visual Scene Aware Dialog (AVSD) challenge and dataset. In this challenge, which is one track of the 7th Dialog System Technology Challenges (DSTC7) workshop1, the task is to build a system that generates responses in a dialog about an input video

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا