ﻻ يوجد ملخص باللغة العربية
In a deduction system with some propositions and some known relations among these propositions, people usually care about the minimum of propositions by which all other propositions can be deduced according to these known relations. Here we call it a minimizing deduction system. Its common solution is the guess and determine method. In this paper we propose a method of solving the minimizing deduction system based on MILP. Firstly, we introduce the conceptions of state variable, path variable and state copy, which enable us to characterize all rules by inequalities. Then we reduce the deduction problem to a MILP problem and solve it by the Gurobi optimizer. As its applications, we analyze the security of two stream ciphers SNOW2.0 and Enocoro-128v2 in resistance to guess and determine attacks. For SNOW 2.0, it is surprising that it takes less than 0.1s to get the best solution of 9 known variables in a personal Macbook Air(Early 2015, Double Intel Core i5 1.6GHZ, 4GB DDR3). For Enocoro-128v2, we get the best solution of 18 known variables within 3 minutes. Whats more, we propose two improvements to reduce the number of variables and inequalities which significantly decrease the scale of the MILP problem.
Deduction systems and graph rewriting systems are compared within a common categorical framework. This leads to an improved deduction method in diagrammatic logics.
In this paper we propose a complete axiomatization of the bisimilarity distance of Desharnais et al. for the class of finite labelled Markov chains. Our axiomatization is given in the style of a quantitative extension of equational logic recently pro
Motion blur can impede marker detection and marker-based pose estimation, which is common in real-world robotic applications involving fiducial markers. To solve this problem, we propose a novel lightweight generative adversarial network (GAN), Ghost
ReLU (rectified linear units) neural network has received significant attention since its emergence. In this paper, a univariate ReLU (UReLU) neural network is proposed to both modelling the nonlinear dynamic system and revealing insights about the s
In this paper, the efficient hinging hyperplanes (EHH) neural network is proposed based on the model of hinging hyperplanes (HH). The EHH neural network is a distributed representation, the training of which involves solving several convex optimizati