ترغب بنشر مسار تعليمي؟ اضغط هنا

Theory of perpendicular magnetocrystalline anisotropy in Fe/MgO (001)

155   0   0.0 ( 0 )
 نشر من قبل Sonny H. Rhim
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The origin of large perpendicular magneto-crystalline anisotropy (PMCA) in Fe/MgO (001) is revealed by comparing Fe layers with and without the MgO. Although Fe-O $p$-$d$ hybridization is weakly present, it cannot be the main origin of the large PMCA as claimed in previous study. Instead, perfect epitaxy of Fe on the MgO is more important to achieve such large PMCA. As an evidence, we show that the surface layer in a clean free-standing Fe (001) dominantly contributes to $E_{MCA}$, while in the Fe/MgO, those by the surface and the interface Fe layers contribute almost equally. The presence of MgO does not change positive contribution from $langle xz|ell_Z|yzrangle$, whereas it reduces negative contribution from $langle z^2|ell_X|yzrangle$ and $langle xy|ell_X|xz,yzrangle$.



قيم البحث

اقرأ أيضاً

We investigated perpendicular magnetic anisotropy (PMA) and related properties of epitaxial Fe (0.7 nm)/MgAl2O4(001) heterostructures prepared by electron-beam evaporation. Using an optimized structure, we obtained a large PMA energy ~1 MJ/m3 at room temperature, comparable to that in ultrathin-Fe/MgO(001) heterostructures. Both the PMA energy and saturation magnetization show weak temperature dependence, ensuring wide working temperature in application. The effective magnetic damping constant of the 0.7 nm Fe layer was ~0.02 using time-resolved magneto-optical Kerr effect. This study demonstrates capability of the Fe/MgAl2O4 heterostructure for perpendicular magnetic tunnel junctions, as well as a good agreement with theoretical predictions.
217 - A. Hallal , B. Dieny , M. Chshiev 2014
Using first-principles calculations, we investigated the impact of chromium (Cr) and vanadium (V) impurities on the magnetic anisotropy and spin polarization in Fe/MgO magnetic tunnel junctions. It is demonstrated using layer resolved anisotropy calc ulation technique, that while the impurity near the interface has a drastic effect in decreasing the perpendicular magnetic anisotropy (PMA), its position within the bulk allows maintaining high surface PMA. Moreover, the effective magnetic anisotropy has a strong tendency to go from in-plane to out-of-plane character as a function of Cr and V concentration favoring out-of-plane magnetization direction for ~1.5 nm thick Fe layers at impurity concentrations above 20 %. At the same time, spin polarization is not affected and even enhanced in most situations favoring an increase of tunnel magnetoresistance (TMR) values.
The electric field effect on magnetic anisotropy was studied in an ultrathin Fe(001) monocrystalline layer sandwiched between Cr buffer and MgO tunnel barrier layers, mainly through post-annealing temperature and measurement temperature dependences. A large coefficient of the electric field effect of more than 200 fJ/Vm was observed in the negative range of electric field, as well as an areal energy density of perpendicular magnetic anisotropy (PMA) of around 600 uJ/m2. More interestingly, nonlinear behavior, giving rise to a local minimum around +100 mV/nm, was observed in the electric field dependence of magnetic anisotropy, being independent of the post-annealing and measurement temperatures. The insensitivity to both the interface conditions and the temperature of the system suggests that the nonlinear behavior is attributed to an intrinsic origin such as an inherent electronic structure in the Fe/MgO interface. The present study can contribute to the progress in theoretical studies, such as ab initio calculations, on the mechanism of the electric field effect on PMA.
The perpendicular magnetic anisotropy (PMA) at magnetic transition metal/oxide interfaces is a key element in building out-of-plane magnetized magnetic tunnel junctions for spin-transfer-torque magnetic random access memory (STT-MRAM). Size downscali ng renders magnetic properties more sensitive to thermal effects. Thus, understanding temperature dependence of magnetic anisotropy becomes crucial. In this work, we theoretically address the correlation between temperature dependence of PMA and magnetization in typical Fe/MgO-based structures. In particular, the possible mechanisms behind experimentally reported deviations from the Callen and Callen scaling power law are analyzed. First-principles calculations reveal small high-order anisotropy terms ruling out an intrinsic microscopic mechanism underlying those deviations. Neglecting higher-order anisotropy terms in the atomisitic spin Hamiltonian, two possible extrinsic macroscopic mechanisms are unveiled: influence of the dead layer, always present in storage layer of STT-MRAM cells, and spatial inhomogeneities of interfacial magnetic anisotropy. We show that presence of a dead layer simultaneously with scaling the anisotropy constant by the total magnetization of the sample rather than that of the interface itself lead to low scaling powers. In the second mechanism, increasing the percentage of inhomogeneity in the interfacial PMA is revealed to decrease the scaling power. Apart from those different mechanisms, the layer-resolved temperature-dependence of PMA is shown to ideally follow the Callen and Callen scaling power law for each individual Fe layer. These results allow coherently explaining the difference in scaling powers relating anisotropy and magnetization thermal variations reported in earlier experiments. This is crucial for the understanding of the thermal stability of the storage layer magnetization in STT-MRAM applications.
174 - A. Hallal , H. X. Yang , B. Dieny 2013
Using first-principles calculations, we elucidate microscopic mechanisms of perpendicular magnetic anisotropy (PMA)in Fe/MgO magnetic tunnel junctions through evaluation of orbital and layer resolved contributions into the total anisotropy value. It is demonstrated that the origin of the large PMA values is far beyond simply considering the hybridization between Fe-3d$ and O-2p orbitals at the interface between the metal and the insulator. On-site projected analysis show that the anisotropy energy is not localized at the interface but it rather propagates into the bulk showing an attenuating oscillatory behavior which depends on orbital character of contributing states and interfacial conditions. Furthermore, it is found in most situations that states with $d_{yz(xz)}$ and $d_{z^2}$ character tend always to maintain the PMA while those with $d_{xy}$ and $d_{x^2-y^2}$ character tend to favor the in-plane anisotropy. It is also found that while MgO thickness has no influence on PMA, the calculated perpendicular magnetic anisotropy oscillates as a function of Fe thickness with a period of 2ML and reaches a maximum value of 3.6 mJ/m$^2$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا