ﻻ يوجد ملخص باللغة العربية
Modern deep neural networks increasingly make use of features such as dynamic control flow, data structures and dynamic tensor shapes. Existing deep learning systems focus on optimizing and executing static neural networks which assume a pre-determined model architecture and input data shapes--assumptions which are violated by dynamic neural networks. Therefore, executing dynamic models with deep learning systems is currently both inflexible and sub-optimal, if not impossible. Optimizing dynamic neural networks is more challenging than static neural networks; optimizations must consider all possible execution paths and tensor shapes. This paper proposes Nimble, a high-performance and flexible system to optimize, compile, and execute dynamic neural networks on multiple platforms. Nimble handles model dynamism by introducing a dynamic type system, a set of dynamism-oriented optimizations, and a light-weight virtual machine runtime. Our evaluation demonstrates that Nimble outperforms state-of-the-art deep learning frameworks and runtime systems for dynamic neural networks by up to 20x on hardware platforms including Intel CPUs, ARM CPUs, and Nvidia GPUs.
Deep neural network models are becoming increasingly popular and have been used in various tasks such as computer vision, speech recognition, and natural language processing. Machine learning models are commonly trained in a resource-rich environment
As gradual typing becomes increasingly popular in languages like Python and TypeScript, there is a growing need to infer type annotations automatically. While type annotations help with tasks like code completion and static error catching, these anno
Recently, dynamic inference has emerged as a promising way to reduce the computational cost of deep convolutional neural network (CNN). In contrast to static methods (e.g. weight pruning), dynamic inference adaptively adjusts the inference process ac
A new convolutional neural network (CNN) architecture for 2D driver/passenger pose estimation and seat belt detection is proposed in this paper. The new architecture is more nimble and thus more suitable for in-vehicle monitoring tasks compared to ot
Garcia and Cimini study a type inference problem for the ITGL, an implicitly and gradually typed language with let-polymorphism, and develop a sound and complete inference algorithm for it. Soundness and completeness mean that, if the algorithm succe