ترغب بنشر مسار تعليمي؟ اضغط هنا

NADS-Net: A Nimble Architecture for Driver and Seat Belt Detection via Convolutional Neural Networks

85   0   0.0 ( 0 )
 نشر من قبل Sehyun Chun
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

A new convolutional neural network (CNN) architecture for 2D driver/passenger pose estimation and seat belt detection is proposed in this paper. The new architecture is more nimble and thus more suitable for in-vehicle monitoring tasks compared to other generic pose estimation algorithms. The new architecture, named NADS-Net, utilizes the feature pyramid network (FPN) backbone with multiple detection heads to achieve the optimal performance for driver/passenger state detection tasks. The new architecture is validated on a new data set containing video clips of 100 drivers in 50 driving sessions that are collected for this study. The detection performance is analyzed under different demographic, appearance, and illumination conditions. The results presented in this paper may provide meaningful insights for the autonomous driving research community and automotive industry for future algorithm development and data collection.



قيم البحث

اقرأ أيضاً

To help prevent motor vehicle accidents, there has been significant interest in finding an automated method to recognize signs of driver distraction, such as talking to passengers, fixing hair and makeup, eating and drinking, and using a mobile phone . In this paper, we present an automated supervised learning method called Drive-Net for driver distraction detection. Drive-Net uses a combination of a convolutional neural network (CNN) and a random decision forest for classifying images of a driver. We compare the performance of our proposed Drive-Net to two other popular machine-learning approaches: a recurrent neural network (RNN), and a multi-layer perceptron (MLP). We test the methods on a publicly available database of images acquired under a controlled environment containing about 22425 images manually annotated by an expert. Results show that Drive-Net achieves a detection accuracy of 95%, which is 2% more than the best results obtained on the same database using other methods
Deep neural network (DNN) accelerators with improved energy and delay are desirable for meeting the requirements of hardware targeted for IoT and edge computing systems. Convolutional neural networks (CoNNs) belong to one of the most popular types of DNN architectures. This paper presents the design and evaluation of an accelerator for CoNNs. The system-level architecture is based on mixed-signal, cellular neural networks (CeNNs). Specifically, we present (i) the implementation of different layers, including convolution, ReLU, and pooling, in a CoNN using CeNN, (ii) modified CoNN structures with CeNN-friendly layers to reduce computational overheads typically associated with a CoNN, (iii) a mixed-signal CeNN architecture that performs CoNN computations in the analog and mixed signal domain, and (iv) design space exploration that identifies what CeNN-based algorithm and architectural features fare best compared to existing algorithms and architectures when evaluated over common datasets -- MNIST and CIFAR-10. Notably, the proposed approach can lead to 8.7$times$ improvements in energy-delay product (EDP) per digit classification for the MNIST dataset at iso-accuracy when compared with the state-of-the-art DNN engine, while our approach could offer 4.3$times$ improvements in EDP when compared to other network implementations for the CIFAR-10 dataset.
Geometric deep learning has attracted significant attention in recent years, in part due to the availability of exotic data types for which traditional neural network architectures are not well suited. Our goal in this paper is to generalize convolut ional neural networks (CNN) to the manifold-valued image case which arises commonly in medical imaging and computer vision applications. Explicitly, the input data to the network is an image where each pixel value is a sample from a Riemannian manifold. To achieve this goal, we must generalize the basic building block of traditional CNN architectures, namely, the weighted combinations operation. To this end, we develop a tangent space combination operation which is used to define a convolution operation on manifold-valued images that we call, the Manifold-Valued Convolution (MVC). We prove theoretical properties of the MVC operation, including equivariance to the action of the isometry group admitted by the manifold and characterizing when compositions of MVC layers collapse to a single layer. We present a detailed description of how to use MVC layers to build full, multi-layer neural networks that operate on manifold-valued images, which we call the MVC-net. Further, we empirically demonstrate superior performance of the MVC-nets in medical imaging and computer vision tasks.
Recently, channel attention mechanism has demonstrated to offer great potential in improving the performance of deep convolutional neural networks (CNNs). However, most existing methods dedicate to developing more sophisticated attention modules for achieving better performance, which inevitably increase model complexity. To overcome the paradox of performance and complexity trade-off, this paper proposes an Efficient Channel Attention (ECA) module, which only involves a handful of parameters while bringing clear performance gain. By dissecting the channel attention module in SENet, we empirically show avoiding dimensionality reduction is important for learning channel attention, and appropriate cross-channel interaction can preserve performance while significantly decreasing model complexity. Therefore, we propose a local cross-channel interaction strategy without dimensionality reduction, which can be efficiently implemented via $1D$ convolution. Furthermore, we develop a method to adaptively select kernel size of $1D$ convolution, determining coverage of local cross-channel interaction. The proposed ECA module is efficient yet effective, e.g., the parameters and computations of our modules against backbone of ResNet50 are 80 vs. 24.37M and 4.7e-4 GFLOPs vs. 3.86 GFLOPs, respectively, and the performance boost is more than 2% in terms of Top-1 accuracy. We extensively evaluate our ECA module on image classification, object detection and instance segmentation with backbones of ResNets and MobileNetV2. The experimental results show our module is more efficient while performing favorably against its counterparts.
We proposed a deep learning method for interpretable diabetic retinopathy (DR) detection. The visual-interpretable feature of the proposed method is achieved by adding the regression activation map (RAM) after the global averaging pooling layer of th e convolutional networks (CNN). With RAM, the proposed model can localize the discriminative regions of an retina image to show the specific region of interest in terms of its severity level. We believe this advantage of the proposed deep learning model is highly desired for DR detection because in practice, users are not only interested with high prediction performance, but also keen to understand the insights of DR detection and why the adopted learning model works. In the experiments conducted on a large scale of retina image dataset, we show that the proposed CNN model can achieve high performance on DR detection compared with the state-of-the-art while achieving the merits of providing the RAM to highlight the salient regions of the input image.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا