ﻻ يوجد ملخص باللغة العربية
In periodic quantum systems which are both homogeneously tilted and driven, the interplay between drive and Bloch oscillations controls transport dynamics. Using a quantum gas in a modulated optical lattice, we show experimentally that inhomogeneity of the applied force leads to a rich new variety of dynamical behaviors controlled by the drive phase, from self-parametrically-modulated Bloch epicycles to adaptive driving of transport against a force gradient to modulation-enhanced monopole modes. Matching experimental observations to fit-parameter-free numerical predictions of time-dependent band theory, we show that these phenomena can be quantitatively understood as manifestations of an underlying inhomogeneity-induced phase space structure, in which topological classification of stroboscopic Poincare orbits controls the transport dynamics.
We realize the dynamical 1D spin-orbit-coupling (SOC) of a Bose-Einstein condensate confined within an optical cavity. The SOC emerges through spin-correlated momentum impulses delivered to the atoms via Raman transitions. These are effected by class
Phasonic degrees of freedom are unique to quasiperiodic structures, and play a central role in poorly-understood properties of quasicrystals from excitation spectra to wavefunction statistics to electronic transport. However, phasons are challenging
Engineered spin-orbit coupling (SOC) in cold atom systems can aid in the study of novel synthetic materials and complex condensed matter phenomena. Despite great advances, alkali atom SOC systems are hindered by heating from spontaneous emission, whi
We predict that an atomic Bose-Einstein condensate strongly coupled to an intracavity optical lattice can undergo resonant tunneling and directed transport when a constant and uniform bias force is applied. The bias force induces Bloch oscillations,
We experimentally investigate a scheme for studying lattice transport phenomena, based on the controlled momentum-space dynamics of ultracold atomic matter waves. In the effective tight-binding models that can be simulated, we demonstrate that this t