ﻻ يوجد ملخص باللغة العربية
We experimentally investigate a scheme for studying lattice transport phenomena, based on the controlled momentum-space dynamics of ultracold atomic matter waves. In the effective tight-binding models that can be simulated, we demonstrate that this technique allows for a local and time-dependent control over all system parameters, and additionally allows for single-site resolved detection of atomic populations. We demonstrate full control over site-to-site off-diagonal tunneling elements (amplitude and phase) and diagonal site-energies, through the observation of continuous-time quantum walks, Bloch oscillations, and negative tunneling. These capabilities open up new prospects in the experimental study of disordered and topological systems.
We present a simple experimental scheme, based on standard atom optics techniques, to design highly versatile model systems for the study of single particle quantum transport phenomena. The scheme is based on a discrete set of free-particle momentum
Alkaline-earth (AE) atoms have metastable clock states with minute-long optical lifetimes, high-spin nuclei, and SU($N$)-symmetric interactions that uniquely position them for advancing atomic clocks, quantum information processing, and quantum simul
In periodic quantum systems which are both homogeneously tilted and driven, the interplay between drive and Bloch oscillations controls transport dynamics. Using a quantum gas in a modulated optical lattice, we show experimentally that inhomogeneity
We demonstrate a source for correlated pairs of atoms characterized by two opposite momenta and two spatial modes forming a Bell state only involving external degrees of freedom. We characterize the state of the emitted atom beams by observing strong
We measure the mass, gap, and magnetic moment of a magnon in the ferromagnetic $F=1$ spinor Bose-Einstein condensate of $^{87}$Rb. We find an unusually heavy magnon mass of $1.038(2)_mathrm{stat}(8)_mathrm{sys}$ times the atomic mass, as determined b