ترغب بنشر مسار تعليمي؟ اضغط هنا

Phasonic Spectroscopy of a Quantum Gas in a Quasicrystalline Lattice

103   0   0.0 ( 0 )
 نشر من قبل Shankari Rajagopal
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Phasonic degrees of freedom are unique to quasiperiodic structures, and play a central role in poorly-understood properties of quasicrystals from excitation spectra to wavefunction statistics to electronic transport. However, phasons are challenging to access dynamically in the solid state due to their complex long-range character and the effects of disorder and strain. We report phasonic spectroscopy of a quantum gas in a one-dimensional quasicrystalline optical lattice. We observe that strong phasonic driving produces a nonperturbative high-harmonic plateau strikingly different from the effects of standard dipolar driving. Tuning the potential from crystalline to quasicrystalline, we identify spectroscopic signatures of quasiperiodicity and interactions and map the emergence of a multifractal energy spectrum, opening a path to direct imaging of the Hofstadter butterfly.


قيم البحث

اقرأ أيضاً

We have investigated spin dynamics in a 2D quantum gas. Through spin-changing collisions, two clouds with opposite spin orientations are spontaneously created in a Bose-Einstein condensate. After ballistic expansion, both clouds acquire ring-shaped d ensity distributions with superimposed angular density modulations. The density distributions depend on the applied magnetic field and are well explained by a simple Bogoliubov model. We show that the two clouds are anti-correlated in momentum space. The observed momentum correlations pave the way towards the creation of an atom source with non-local Einstein-Podolsky-Rosen entanglement.
Quantum fluctuations are the origin of genuine quantum many-body effects, and can be neglected in classical mean-field phenomena. Here we report on the observation of stable quantum droplets containing $sim$ 800 atoms which are expected to collapse a t the mean-field level due to the essentially attractive interaction. By systematic measurements on individual droplets we demonstrate quantitatively that quantum fluctuations stabilize them against the mean-field collapse. We observe in addition interference of several droplets indicating that this stable many-body state is phase coherent.
86 - Ronen M. Kroeze , Yudan Guo , 2019
We realize the dynamical 1D spin-orbit-coupling (SOC) of a Bose-Einstein condensate confined within an optical cavity. The SOC emerges through spin-correlated momentum impulses delivered to the atoms via Raman transitions. These are effected by class ical pump fields acting in concert with the quantum dynamical cavity field. Above a critical pump power, the Raman coupling emerges as the atoms superradiantly populate the cavity mode with photons. Concomitantly, these photons cause a back-action onto the atoms, forcing them to order their spin-spatial state. This SOC-inducing superradiant Dicke phase transition results in a spinor-helix polariton condensate. We observe emergent SOC through spin-resolved atomic momentum imaging. Dynamical SOC in quantum gas cavity QED, and the extension to dynamical gauge fields, may enable the creation of Meissner-like effects, topological superfluids, and exotic quantum Hall states in coupled light-matter systems.
In periodic quantum systems which are both homogeneously tilted and driven, the interplay between drive and Bloch oscillations controls transport dynamics. Using a quantum gas in a modulated optical lattice, we show experimentally that inhomogeneity of the applied force leads to a rich new variety of dynamical behaviors controlled by the drive phase, from self-parametrically-modulated Bloch epicycles to adaptive driving of transport against a force gradient to modulation-enhanced monopole modes. Matching experimental observations to fit-parameter-free numerical predictions of time-dependent band theory, we show that these phenomena can be quantitatively understood as manifestations of an underlying inhomogeneity-induced phase space structure, in which topological classification of stroboscopic Poincare orbits controls the transport dynamics.
The production of molecules from dual species atomic quantum gases has enabled experiments that employ molecules at nanoKelvin temperatures. As a result, every degree of freedom of these molecules is in a well-defined quantum state and exquisitely co ntrolled. These ultracold molecules open a new world of precision quantum chemistry in which quantum statistics, quantum partial waves, and even many-body correlations can play important roles. Moreover, to investigate the strongly correlated physics of many interacting molecular dipoles, we can mitigate lossy chemical reactions by controlling the dimensionality of the system using optical lattices formed by interfering laser fields. In a full three-dimensional optical lattice, chemistry can be turned on or off by tuning the lattice depth, which allows us to configure an array of long-range interacting quantum systems with rich internal structure. Such a system represents an excellent platform for gaining fundamental insights to complex materials based on quantum simulations and also for quantum information processing in the future.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا