ترغب بنشر مسار تعليمي؟ اضغط هنا

Collective near-field coupling in infrared-phononic metasurfaces for nano-light canalization

80   0   0.0 ( 0 )
 نشر من قبل Rainer Hillenbrand
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Polaritons, coupled excitations of photons and dipolar matter excitations, can propagate along anisotropic metasurfaces with either hyperbolic or elliptical dispersion. At the transition from hyperbolic to elliptical dispersion (corresponding to a topological transition), various intriguing phenomena are found, such as an enhancement of the photonic density of states, polariton canalization and hyperlensing. Here we investigate theoretically and experimentally the topological transition and the polaritonic coupling of deeply subwavelength elements in a uniaxial infrared-phononic metasurface, a grating of hexagonal boron nitride (hBN) nanoribbons. By hyperspectral infrared nanoimaging, we observe, for the first time, a synthetic transverse optical phonon resonance (that is, the strong collective near-field coupling of the nanoribbons) in the middle of the hBN Reststrahlen band, yielding a topological transition from hyperbolic to elliptical dispersion. We further visualize and characterize the spatial evolution of a deeply subwavelength canalization mode near the transition frequency, which is a collimated polariton that is the basis for hyperlensing and diffraction-less propagation. Our results provide fundamental insights into the role of polaritonic near-field coupling in metasurfaces for creating topological transitions and polariton canalization.

قيم البحث

اقرأ أيضاً

The coherent exchange of optical near fields between two neighboring dipoles plays an essential role for the optical properties, quantum dynamics and thus for the function of many naturally occurring and artificial nanosystems. These interactions are inherently short-ranged, extending over a few nanometers only, and depend sensitively on relative orientation, detuning and dephasing, i.e., on the vectorial properties of the coupled dipolar near fields. This makes it challenging to analyze them experimentally. Here, we introduce plasmonic nanofocusing spectroscopy to record coherent light scattering spectra with 5-nm spatial resolution from a small dipole antenna, excited solely by evanescent fields and coupled to plasmon resonances in a single gold nanorod. We resolve mode couplings, resonance energy shifts and Purcell effects as a function of dipole distance and relative orientation, and show how they arise from different vectorial components of the interacting optical near-fields. Our results pave the way for using dipolar alignment to control the optical properties and function of nanoscale systems.
We perform a low temperature Raman scattering study of phononic and collective spin excitations in the orthogonal dimers compound SrCu_2(BO_3)_2, focussing on the symmetry and the effects of external fields on the magnetic modes. The zero field symme try and the behavior in magnetic fields of the elementary and bound magnetic triplet states are experimentally determined. We find that a minimal 4-spin cluster forming the unit cell is able to describe the symmetry as well as the anisotropic dispersions in external fields of the spin gap multiplet branches around 24 cm^{-1}. We identify two Raman coupling mechanisms responsible for the distinct resonance behavior of these magnetic modes and we show that one of these can be ascribed to an effective intra-dimer Dzyaloshinskii-Moriya spin interaction. Our data also suggest a possible explanation for the existence of a strongly bound two-triplet state in the singlet sector which has an energy below the spin gap. The low temperature phononic spectra suggest strong spin-phonon coupling and show intriguing quasi-degeneracy of modes in the context of the present crystal structure determination.
We demonstrate in this work that the use of metasurfaces provides a viable strategy to largely tune and enhance near-field radiative heat transfer between extended structures. In particular, using a rigorous coupled wave analysis, we predict that Si- based metasurfaces featuring two-dimensional periodic arrays of holes can exhibit a room-temperature near-field radiative heat conductance much larger than any unstructured material to date. We show that this enhancement, which takes place in a broad range of separations, relies on the possibility to largely tune the properties of the surface plasmon polaritons that dominate the radiative heat transfer in the near-field regime.
We propose a numerically efficient `adjoint inverse design method to optimize a planar structure of dipole scatterers, to manipulate the radiation from an electric dipole emitter. Several examples are presented: modification of the near-field to prov ide a 3 fold enhancement in power emission; re-structuring the far-field radiation pattern to exhibit chosen directivity; and the design of a discrete `Luneburg lens. Additionally, we develop a clear physical interpretation of the optimized structure, by extracting `eigen-polarizabilities of the system. We find that large `eigen-polarizability corresponds to a large collective response of the scatterers. This framework may find utility in wavefront shaping as well as in the design and characterisation of non-local metasurfaces.
Infrared imaging is a crucial technique in a multitude of applications, including night vision, autonomous vehicles navigation, optical tomography, and food quality control. Conventional infrared imaging technologies, however, require the use of mate rials like narrow-band gap semiconductors which are sensitive to thermal noise and often require cryogenic cooling. Here, we demonstrate a compact all-optical alternative to perform infrared imaging in a metasurface composed of GaAs semiconductor nanoantennas, using a nonlinear wave-mixing process. We experimentally show the up-conversion of short-wave infrared wavelengths via the coherent parametric process of sum-frequency generation. In this process, an infrared image of a target is mixed inside the metasurface with a strong pump beam, translating the image from infrared to the visible in a nanoscale ultra-thin imaging device. Our results open up new opportunities for the development of compact infrared imaging devices with applications in infrared vision and life sciences.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا