ﻻ يوجد ملخص باللغة العربية
We perform a low temperature Raman scattering study of phononic and collective spin excitations in the orthogonal dimers compound SrCu_2(BO_3)_2, focussing on the symmetry and the effects of external fields on the magnetic modes. The zero field symmetry and the behavior in magnetic fields of the elementary and bound magnetic triplet states are experimentally determined. We find that a minimal 4-spin cluster forming the unit cell is able to describe the symmetry as well as the anisotropic dispersions in external fields of the spin gap multiplet branches around 24 cm^{-1}. We identify two Raman coupling mechanisms responsible for the distinct resonance behavior of these magnetic modes and we show that one of these can be ascribed to an effective intra-dimer Dzyaloshinskii-Moriya spin interaction. Our data also suggest a possible explanation for the existence of a strongly bound two-triplet state in the singlet sector which has an energy below the spin gap. The low temperature phononic spectra suggest strong spin-phonon coupling and show intriguing quasi-degeneracy of modes in the context of the present crystal structure determination.
A series of compounds M$_{0.1}$Sr$_{0.9}$Cu$_2$(BO$_3$)$_2$ with Sr substituted by M=Al, La, Na and Y were prepared by solid state reaction. XRD analysis showed that these doping compounds are isostructural to SrCu$_2$(BO$_3$)$_2$. The magnetic susce
Using far-infrared spectroscopy in magnetic fields up to 12T we have studied a two-dimensional dimer spin gap system SrCu_2(BO_3)_2. We found several infrared active modes in the dimerized state (below 10K) in the frequency range from 3 to 100cm^-1.
Electron-phonon-driven charge density waves can in some circumstances allow electronic correlations to become predominant, driving a system into a Mott insulating state. New insights into both the Mott state and preceding charge density wave may resu
Using Raman spectroscopy, we investigate the lattice phonons, magnetic excitations, and magneto-elastic coupling in the distorted triangular-lattice Heisenberg antiferromagnet alpha-SrCr2O4, which develops helical magnetic order below 43 K. Temperatu
We investigated the magnetic structure and dynamics of YbMnBi$_2$, with elastic and inelastic neutron scattering, to shed light on the topological nature of the charge carriers in the antiferromagnetic phase. We confirm C-type antiferromagnetic order