ﻻ يوجد ملخص باللغة العربية
We propose the GraphSIM -- an objective metric to accurately predict the subjective quality of point cloud with superimposed geometry and color impairments. Motivated by the facts that human vision system is more sensitive to the high spatial-frequency components (e.g., contours, edges), and weighs more to the local structural variations rather individual point intensity, we first extract geometric keypoints by resampling the reference point cloud geometry information to form the object skeleton; we then construct local graphs centered at these keypoints for both reference and distorted point clouds, followed by collectively aggregating color gradient moments (e.g., zeroth, first, and second) that are derived between all other points and centered keypoint in the same local graph for significant feature similarity (a.k.a., local significance) measurement; Final similarity index is obtained by pooling the local graph significance across all color channels and by averaging across all graphs. Our GraphSIM is validated using two large and independent point cloud assessment datasets that involve a wide range of impairments (e.g., re-sampling, compression, additive noise), reliably demonstrating the state-of-the-art performance for all distortions with noticeable gains in predicting the subjective mean opinion score (MOS), compared with those point-wise distance-based metrics adopted in standardization reference software. Ablation studies have further shown that GraphSIM is generalized to various scenarios with consistent performance by examining its key modules and parameters.
A 3D point cloud is often synthesized from depth measurements collected by sensors at different viewpoints. The acquired measurements are typically both coarse in precision and corrupted by noise. To improve quality, previous works denoise a synthesi
The prevalence of accessible depth sensing and 3D laser scanning techniques has enabled the convenient acquisition of 3D dynamic point clouds, which provide efficient representation of arbitrarily-shaped objects in motion. Nevertheless, dynamic point
The principal component analysis (PCA) is widely used for data decorrelation and dimensionality reduction. However, the use of PCA may be impractical in real-time applications, or in situations were energy and computing constraints are severe. In thi
Fusing medical images and the corresponding 3D shape representation can provide complementary information and microstructure details to improve the operational performance and accuracy in brain surgery. However, compared to the substantial image data
Full-reference (FR) point cloud quality assessment (PCQA) has achieved impressive progress in recent years. However, in many cases, obtaining the reference point cloud is difficult, so the no-reference (NR) methods have become a research hotspot. Few