ﻻ يوجد ملخص باللغة العربية
Full-reference (FR) point cloud quality assessment (PCQA) has achieved impressive progress in recent years. However, in many cases, obtaining the reference point cloud is difficult, so the no-reference (NR) methods have become a research hotspot. Few researches about NR objective quality metrics are conducted due to the lack of a large-scale subjective point cloud dataset. Besides, the distinctive property of the point cloud format makes it infeasible to apply blind image quality assessment (IQA) methods directly to predict the quality scores of point clouds. In this paper, we establish a large-scale PCQA dataset, which includes 104 reference point clouds and more than 24,000 distorted point clouds. In the established dataset, each reference point cloud is augmented with 33 types of impairments (e.g., Gaussian noise, contrast distortion, geometry noise, local loss, and compression loss) at 7 different distortion levels. Besides, inspired by the hierarchical perception system and considering the intrinsic attributes of point clouds, an end-to-end sparse convolutional neural network (CNN) is designed to accurately estimate the subjective quality. We conduct several experiments to evaluate the performance of the proposed network. The results demonstrate that the proposed network has reliable performance. The dataset presented in this work will be publicly accessible at http://smt.sjtu.edu.cn.
In this paper, we propose a deep learning based video quality assessment (VQA) framework to evaluate the quality of the compressed users generated content (UGC) videos. The proposed VQA framework consists of three modules, the feature extraction modu
To improve the viewers Quality of Experience (QoE) and optimize computer graphics applications, 3D model quality assessment (3D-QA) has become an important task in the multimedia area. Point cloud and mesh are the two most widely used digital represe
In this paper, we propose a no-reference (NR) image quality assessment (IQA) method via feature level pseudo-reference (PR) hallucination. The proposed quality assessment framework is grounded on the prior models of natural image statistical behavior
We propose a new prototype model for no-reference video quality assessment (VQA) based on the natural statistics of space-time chips of videos. Space-time chips (ST-chips) are a new, quality-aware feature space which we define as space-time localized
The goal of No-Reference Image Quality Assessment (NR-IQA) is to estimate the perceptual image quality in accordance with subjective evaluations, it is a complex and unsolved problem due to the absence of the pristine reference image. In this paper,