ﻻ يوجد ملخص باللغة العربية
We introduce twisted trilayer graphene (tTLG) with two independent twist angles as an ideal system for the precise tuning of the electronic interlayer coupling to maximize the effect of correlated behaviors. As established by experiment and theory in the related twisted bilayer graphene system, van Hove singularities (VHS) in the density of states can be used as a proxy of the tendency for correlated behaviors. To explore the evolution of VHS in the twist-angle phase space of tTLG, we present a general low-energy electronic structure model for any pair of twist angles. We show that the basis of the model has infinite dimensions even at a finite energy cutoff and that no Brillouin zone exists even in the continuum limit. Using this model, we demonstrate that the tTLG system exhibits a wide range of magic angles at which VHS merge and the density of states has a sharp peak at the charge-neutrality point through two distinct mechanisms: the incommensurate perturbation of twisted bilayer graphenes flat bands or the equal hybridization between two bilayer moire superlattices.
Understanding and tuning correlated states is of great interest and significance to modern condensed matter physics. The recent discovery of unconventional superconductivity and Mott-like insulating states in magic-angle twisted bilayer graphene (tBL
Studies on two-dimensional electron systems in a strong magnetic field first revealed the quantum Hall (QH) effect, a topological state of matter featuring a finite Chern number (C) and chiral edge states. Haldane later theorized that Chern insulator
Motivated by recent experiments indicating strong superconductivity and intricate correlated insulating and flavor-polarized physics in mirror-symmetric twisted trilayer graphene, we study the effects of interactions in this system close to the magic
Multilayered van der Waals structures often lack periodicity, which difficults their modeling. Building on previous work for bilayers, we develop a tight-binding based, momentum space formalism capable of describing incommensurate multilayered van de
We study the symmetries of twisted trilayer graphenes band structure under various extrinsic perturbations, and analyze the role of long-range electron-electron interactions near the first magic angle. The electronic structure is modified by these in