ﻻ يوجد ملخص باللغة العربية
Motivated by recent experiments indicating strong superconductivity and intricate correlated insulating and flavor-polarized physics in mirror-symmetric twisted trilayer graphene, we study the effects of interactions in this system close to the magic angle, using a combination of analytical and numerical methods. We identify asymptotically exact correlated many-body ground states at all integer filling fractions $ u$ of the flat bands. To determine their fate when moving away from these fine-tuned points, we apply self-consistent Hartree-Fock numerics and analytic perturbation theory, with good agreement between the two approaches. This allows us to construct a phase diagram for the system as a function of $ u$ and the displacement field, the crucial experimental tuning parameter of the system, and study the spectra of the different phases. The phase diagram is dominated by a correlated semimetallic intervalley coherent state and an insulating sublattice-polarized phase around charge neutrality, $ u=0$, with additional spin-polarization being present at quarter ($ u=-2$) or three quarter ($ u=+2$) fillings of the quasi-flat bands. We further study the superconducting instabilities emerging from these correlated states, both in the absence and in the additional presence of electron-phonon coupling, also taking into account possible Wess-Zumino-Witten terms. In the experimentally relevant regime, we find triplet pairing to dominate, possibly explaining the observed violation of the Pauli limit. Our results have several consequences for experiments as well as future theoretical work and illustrate the rich physics resulting from the interplay of almost flat bands and dispersive Dirac cones in twisted trilayer graphene.
Recent experiments on twisted bilayer graphene have shown a high-temperature parent state with massless Dirac fermions and broken electronic flavor symmetry; superconductivity and correlated insulators emerge from this parent state at lower temperatu
We introduce and analyze a model that sheds light on the interplay between correlated insulating states, superconductivity, and flavor-symmetry breaking in magic angle twisted bilayer graphene. Using a variational mean-field theory, we determine the
Experiments on graphene bilayers, where the top layer is rotated with respect to the one below, have displayed insulating behavior when the moire bands are partially filled. We calculate the charge distributions in these phases, and estimate the excitation gaps.
Twisted graphene multilayers have demonstrated to yield a versatile playground to engineer controllable electronic states. Here, by combining first-principles calculations and low-energy models, we demonstrate that twisted graphene trilayers provide
When bilayer graphene is rotationally faulted to an angle $thetaapprox 1.1^circ$, theory predicts the formation of a flat electronic band and correlated insulating, superconducting, and ferromagnetic states have all been observed at partial band fill