ترغب بنشر مسار تعليمي؟ اضغط هنا

Orbital-Energy Splitting in Anion Ordered Ruddlesden-Popper Halide Perovskites for Tunable Optoelectronic Applications

226   0   0.0 ( 0 )
 نشر من قبل Jiawang Hong
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The electronic orbital characteristics at the band edges plays an important role in determining the electrical, optical and defect properties of perovskite photovoltaic materials. It is highly desirable to establish the relationship between the underlying atomic orbitals and the optoelectronic properties as a guide to maximize the photovoltaic performance. Here, using first-principles calculations and taking anion ordered Ruddlesden-Popper (RP) phase halide perovskites Cs$_{n+1}$Ge$_n$I$_{n+1}$Cl$_{2n}$ as an example, we demonstrate how to rationally optimize the optoelectronic properties (e.g., band gap, transition dipole matrix elements, carrier effective masses, band width) through a simple band structure parameter. Our results show that reducing the splitting energy $|Delta c|$ of p orbitals of B-site atom can effectively reduce the band gap and carrier effective masses while greatly improving the optical absorption in the visible region. Thereby, the orbital-property relationship with $Delta c$ is well established through biaxial compressive strain. Finally, it is shown that this approach can be reasonably extended to several other non-cubic halide perovskites with similar p orbitals characteristics at the conduction band edges. Therefore, we believe that our proposed orbital engineering approach provides atomic-level guidance for understanding and optimizing the device performance of layered perovskite solar cells.

قيم البحث

اقرأ أيضاً

2D Ruddlesden Popper perovskites have been extensively studied for their exceptional optical and electronic characteristics while only a few studies have shed light on their mechanical properties. The existing literature mainly discusses the mechanic al strength of single crystal perovskites, however a systematic study towards structure tunability of 2D perovskite thin films is still missing. In this study, we report the effect of number of inorganic layers `n on elastic modulus of Butylammonium based 2D, quasi-2D perovskites and 3D perovskite using nanoindentation technique. The experimental results have also been substantiated using first principle density functional theory calculations. Understanding the mechanical behaviour of 2D Ruddlesden Popper perovskites thin films in comparison with conventional 3D perovskite offers intriguing insights into the atomic layer dependent properties and paves the path for next generation mechanically durable novel devices.
Halide perovskites are promising semiconductors for inexpensive, high-performance optoelectronics. Despite a remarkable defect tolerance compared to conventional semiconductors, perovskite thin films still show substantial microscale heterogeneity in key properties such as luminescence efficiency and device performance. This behavior has been attributed to spatial fluctuations in the population of sub-bandgap electronic states that act as trap-mediated non-radiative recombination sites. However, the origin of the variations, trap states and extent of the defect tolerance remains a topic of debate, and a precise understanding is critical to the rational design of defect management strategies. By combining scanning X-ray diffraction beamlines at two different synchrotrons with high-resolution transmission electron microscopy, we reveal levels of heterogeneity on the ten-micrometer scale (super-grains) and even ten-nanometer scale (sub-grain domains). We find that local strain is associated with enhanced defect concentrations, and correlations between the local structure and time-resolved photoluminescence reveal that these strain-related defects are the cause of non-radiative recombination. We reveal a direct connection between defect concentrations and non-radiative losses, as well as complex heterogeneity across multiple length scales, shedding new light on the presence and influence of structural defects in halide perovskites.
Scanning transmission electron microscopy in combination with electron energy-loss spectroscopy is used to study LaNiO3/LaAlO3 superlattices grown on (La,Sr)AlO4 with varying single-layer thicknesses which are known to control their electronic proper ties. The microstructure of the films is investigated on the atomic level and the role of observed defects is discussed in the context of the different properties. Two types of Ruddlesden-Popper faults are found which are either two or three dimensional. The common planar Ruddlesden-Popper fault is induced by steps on the substrate surface. In contrast, the three-dimensionally arranged Ruddlesden-Popper fault, whose size is in the nanometer range, is caused by the formation of local stacking faults during film growth. Furthermore, the interfaces of the superlattices are found to show different sharpness, but the microstructure does not depend substantially on the single-layer thickness.
Metal halide perovskites exhibit a materials physics that is distinct from traditional inorganic and organic semiconductors. While materials such as CH3NH3PbI3 are non-magnetic, the presence of heavy elements (Pb and I) in a non-centrosymmetric cryst al environment result in a significant spin-splitting of the frontier electronic bands through the Rashba-Dresselhaus effect. We show, from a combination of textit{ab initio} molecular dynamics, density-functional theory, and relativistic quasi-particle textit{GW} theory, that the nature (magnitude and orientation) of the band splitting depends on the local asymmetry around the Pb and I sites in the perovskite structure. The potential fluctuations vary in time as a result of thermal disorder and a dynamic lone pair instability of the Pb(II) 6s$^{2}$6p$^{0}$ ion. We show that the same physics emerges both for the organic-inorganic CH3NH3PbI3 and the inorganic CsPbI3 compound. The results are relevant to the photophysics of these compounds and are expected to be general to other lead iodide containing perovskites.
Combining ferroelectricity with other properties such as visible light absorption or long-range magnetic order requires the discovery of new families of ferroelectric materials. Here, through the analysis of a high-throughput database of phonon band structures, we identify a new structural family of anti-Ruddlesden-Popper phases A$_4$X$_2$O (A=Ca, Sr, Ba, Eu, X=Sb, P, As, Bi) showing ferroelectric and anti-ferroelectric behaviors. The discovered ferroelectrics belong to the new class of hyperferroelectrics which polarize even under open-circuit boundary conditions. The polar distortion involves the movement of O anions against apical A cations and is driven by geometric effects resulting from internal chemical strains. Within this new structural family, we show that Eu$_4$Sb$_2$O combines coupled ferromagnetic and ferroelectric order at the same atomic site, a very rare occurrence in materials physics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا