ترغب بنشر مسار تعليمي؟ اضغط هنا

Ferroelectricity and multiferroicity in anti-Ruddlesden-Popper structures

135   0   0.0 ( 0 )
 نشر من قبل Maxime Markov
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Combining ferroelectricity with other properties such as visible light absorption or long-range magnetic order requires the discovery of new families of ferroelectric materials. Here, through the analysis of a high-throughput database of phonon band structures, we identify a new structural family of anti-Ruddlesden-Popper phases A$_4$X$_2$O (A=Ca, Sr, Ba, Eu, X=Sb, P, As, Bi) showing ferroelectric and anti-ferroelectric behaviors. The discovered ferroelectrics belong to the new class of hyperferroelectrics which polarize even under open-circuit boundary conditions. The polar distortion involves the movement of O anions against apical A cations and is driven by geometric effects resulting from internal chemical strains. Within this new structural family, we show that Eu$_4$Sb$_2$O combines coupled ferromagnetic and ferroelectric order at the same atomic site, a very rare occurrence in materials physics.



قيم البحث

اقرأ أيضاً

Li2SrNb2O7 (LSNO) crystallizes in a structure closely related to n = 2 Ruddlesden-Popper-type compounds, which is gen-erally formed by intergrowth of 2-dimensional perovskite-type blocks and rocksalt-type layers. The present study demonstrates a coex istence of spontaneous polarization and anti-ferroelectric-like nonlinear response in LSNO at 80 K, suggesting a weak ferroelectricity below the phase transition temperature of 217 K. A combination of first-principles cal-culations and single crystal x-ray diffractions clarifies a polar P21cn structure for the ground state of LSNO, where an in-plane anti-ferroelectric displacement and an out-of-plane polar shift simultaneously take place. The present study offers a new perspective to design ferroelectric and antiferroelectric materials with Ruddlesden-Popper-type compounds.
Scanning transmission electron microscopy in combination with electron energy-loss spectroscopy is used to study LaNiO3/LaAlO3 superlattices grown on (La,Sr)AlO4 with varying single-layer thicknesses which are known to control their electronic proper ties. The microstructure of the films is investigated on the atomic level and the role of observed defects is discussed in the context of the different properties. Two types of Ruddlesden-Popper faults are found which are either two or three dimensional. The common planar Ruddlesden-Popper fault is induced by steps on the substrate surface. In contrast, the three-dimensionally arranged Ruddlesden-Popper fault, whose size is in the nanometer range, is caused by the formation of local stacking faults during film growth. Furthermore, the interfaces of the superlattices are found to show different sharpness, but the microstructure does not depend substantially on the single-layer thickness.
The 2D layered Ruddlesden-Popper crystal structure can host a broad range of functionally important behaviors. Here we establish extraordinary configurational disorder in a two dimensional layered Ruddlesden-Popper (RP) structure using entropy stabil ization assisted synthesis. A protype A2CuO4 RP cuprate oxide with five components (La, Pr, Nd, Sm, Eu) on the A-site sublattice is designed and fabricated into epitaxial single crystal films using pulsed laser deposition. By comparing (La0.2Pr0.2Nd0.2Sm0.2Eu0.2)2CuO4 crystals grown under identical conditions but different substrates, it is found that heteroepitaxial strain plays an important role in crystal phase formation. When grown on a near lattice matched substrate, the high entropy oxide film features a T-type RP structure with uniform A-site cation mixing and square-planar CuO4 units, however, growing under strong compressive strain results in a single crystal non-RP cubic phase consistent with a CuX2O4 spinel structure. These observations are made with a range of combined characterizations using X-ray diffraction, atomic-resolution scanning transmission electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray absorption spectroscopy measurements. Designing configurational complexity and moving between 2D layered RP and 3D cubic crystal structures in this class of cuprate materials opens many opportunities for new design strategies related to magnetoresistance, unconventional superconductivity, ferroelectricity, catalysis, and ion transport.
In this study, we systematically investigate 3D momentum($hbar k$)-resolved electronic structures of Ruddlesden-Popper-type iridium oxides Sr$_{n+1}$Ir$_n$O$_{3n+1}$ using soft-x-ray (SX) angle-resolved photoemission spectroscopy (ARPES). Our results provide direct evidence of an insulator-to-metal transition that occurs upon increasing the dimensionality of the IrO$_2$-plane structure. This transition occurs when the spin-orbit-coupled $j_{rm eff}$=1/2 band changes its behavior in the dispersion relation and moves across the Fermi energy. In addition, an emerging band along the $Gamma$(0,0,0)-R($pi$,$pi$,$pi$) direction is found to play a crucial role in the metallic characteristics of SrIrO$_3$. By scanning the photon energy over 350 eV, we reveal the 3D Fermi surface in SrIrO$_3$ and $k_z$-dependent oscillations of photoelectron intensity in Sr$_3$Ir$_2$O$_7$. In contrast to previously reported results obtained using low-energy photons, folded bands derived from lattice distortions and/or magnetic ordering make significantly weak (but finite) contributions to the $k$-resolved photoemission spectrum. At the first glance, this leads to the ambiguous result that the observed $k$-space topology is consistent with the unfolded Brillouin zone (BZ) picture derived from a non-realistic simple square or cubic Ir lattice. Through careful analysis, we determine that a superposition of the folded and unfolded band structures has been observed in the ARPES spectra obtained using photons in both ultraviolet and SX regions. To corroborate the physics deduced using low-energy ARPES studies, we propose to utilize SX-ARPES as a powerful complementary technique, as this method surveys more than one whole BZ and provides a panoramic view of electronic structures.
A high-throughput investigation of local epitaxy (called combinatorial substrate epitaxy) was carried out on Ca$_2$MnO$_4$ Ruddlesden-Popper thin films of six thicknesses (from 20 to 400 nm), all deposited on isostructural polycrystalline Sr$_2$TiO$_ 4$ substrates. Electron backscatter diffraction revealed grain-over-grain local epitaxial growth for all films, resulting in a single orientation relationship ($OR$) for each substrate-film grain pair. Two preferred epitaxial $ORs$ accounted for more than 90 % of all ORs on 300 different microcrystals, based on analyzing 50 grain pairs for each thickness. The unit cell over unit cell $OR$ ([100][001]$_{film}$ $parallel$ [100][001]$_{substrate}$, or $OR1$) accounted for approximately 30 % of each film. The $OR$ that accounted for 60 % of each film ([100][001]$_{film}$ $parallel$ [100][010]$_{substrate}$, or $OR2$) corresponds to a rotation from $OR1$ by 90$^{circ}$ about the a-axis. $OR2$ is strongly favored for substrate orientations in the center of the stereographic triangle, and $OR1$ is observed for orientations very close to (001) or to those near the edge connecting (100) and (110). While $OR1$ should be lower in energy, the majority observation of $OR2$ implies kinetic hindrances decrease the frequency of $OR1$. Persistent grain over grain growth and the absence of variations of the $OR$ frequencies with thickness implies that the growth competition is finished within the first few si{ anometer}, and local epitaxy persists thereafter during growth.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا