ﻻ يوجد ملخص باللغة العربية
We report the experimental study of the temperature-dependence of the longitudinal spin relaxation time $T_1$ of single Nitrogen-Vacancy (NV) centers hosted in nanodiamonds. To determine the relaxation mechanisms at stake, measurements of the $T_1$ relaxation time are performed for a set of individual NV centers both at room and cryogenic temperatures. The results are consistant with a temperature-dependent relaxation process which is attributed to a thermally-activated magnetic noise produced by paramagnetic impurities lying on the nanodiamond surface. These results confirm the existence of surface-induced spin relaxation processes occurring in nanodiamonds, which are relevant for future developments of sensitive nanoscale NV-based quantum sensors.
We investigate the magnetic field dependent photo-physics of individual Nitrogen-Vacancy (NV) color centers in diamond under cryogenic conditions. At distinct magnetic fields, we observe significant reductions in the NV photoluminescence rate, which
We demonstrate electrical detection of the $^{14}$N nuclear spin coherence of NV centers at room temperature. Nuclear spins are candidates for quantum memories in quantum-information devices and quantum sensors, and hence the electrical detection of
Using pulsed photoionization the coherent spin manipulation and echo formation of ensembles of NV- centers in diamond are detected electrically realizing contrasts of up to 17 %. The underlying spin-dependent ionization dynamics are investigated expe
We report on sensing stability of nanodiamond (ND) quantum sensors in various pH aqueous buffer solutions for the two detection schemes of quantum decoherence spectroscopy and thermometry. The electron spin properties of single nitrogen-vacancy (NV)
The temperature-dependent electron spin relaxation of positively charged excitons in a single InAs quantum dot (QD) was measured by time-resolved photoluminescence spectroscopy at zero applied magnetic fields. The experimental results show that the e