ﻻ يوجد ملخص باللغة العربية
The temperature-dependent electron spin relaxation of positively charged excitons in a single InAs quantum dot (QD) was measured by time-resolved photoluminescence spectroscopy at zero applied magnetic fields. The experimental results show that the electron-spin relaxation is clearly divided into two different temperature regimes: (i) T < 50 K, spin relaxation depends on the dynamical nuclear spin polarization (DNSP) and is approximately temperature-independent, as predicted by Merkulov et al. (ii) T > about 50 K, spin relaxation speeds up with increasing temperature. A model of two LO phonon scattering process coupled with hyperfine interaction is proposed to account for the accelerated electron spin relaxation at higher temperatures.
The emission of circularly polarized light from a single quantum dot relies on the injection of carriers with well-defined spin polarization. Here we demonstrate single dot electroluminescence (EL) with a circular polarization degree up to 35% at zer
The preparation of a coherent heavy-hole spin via ionization of a spin-polarized electron-hole pair in an InAs/GaAs quantum dot in a Voigt geometry magnetic field is investigated. For a dot with a 17 ueV bright-exciton fine-structure splitting, the f
We investigate the triplet-singlet relaxation in a double quantum dot defined by top-gates in an InAs nanowire. In the Pauli spin blockade regime, the leakage current can be mainly attributed to spin relaxation. While at weak and strong inter-dot cou
We measure the relaxation rate $W equiv T_{1}^{-1}$ of a single electron spin in a quantum dot at magnetic fields from 7 T down to 1.75 T, much lower than previously measured. At 1.75 T we find that $T_{1}$ is 170 ms. We find good agreement between o
We demonstrate all optical electron spin initialization, storage and readout in a single self-assembled InGaAs quantum dot. Using a single dot charge storage device we monitor the relaxation of a single electron over long timescales exceeding 40{mu}s