ترغب بنشر مسار تعليمي؟ اضغط هنا

Low temperature photo-physics of single NV centers in diamond

86   0   0.0 ( 0 )
 نشر من قبل Patrick Maletinsky M
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the magnetic field dependent photo-physics of individual Nitrogen-Vacancy (NV) color centers in diamond under cryogenic conditions. At distinct magnetic fields, we observe significant reductions in the NV photoluminescence rate, which indicate a marked decrease in the optical readout efficiency of the NVs ground state spin. We assign these dips to excited state level anti-crossings, which occur at magnetic fields that strongly depend on the effective, local strain environment of the NV center. Our results offer new insights into the structure of the NVs excited states and a new tool for their effective characterization. Using this tool, we observe strong indications for strain-dependent variations of the NVs orbital g-factor, obtain new insights into NV charge state dynamics, and draw important conclusions regarding the applicability of NV centers for low-temperature quantum sensing.

قيم البحث

اقرأ أيضاً

We demonstrate electrical detection of the $^{14}$N nuclear spin coherence of NV centers at room temperature. Nuclear spins are candidates for quantum memories in quantum-information devices and quantum sensors, and hence the electrical detection of nuclear spin coherence is essential to develop and integrate such quantum devices. In the present study, we used a pulsed electrically detected electron-nuclear double resonance technique to measure the Rabi oscillations and coherence time ($T_2$) of $^{14}$N nuclear spins in NV centers at room temperature. We observed $T_2 approx$ 0.9 ms at room temperature. Our results will pave the way for the development of novel electron- and nuclear-spin-based diamond quantum devices.
Using pulsed photoionization the coherent spin manipulation and echo formation of ensembles of NV- centers in diamond are detected electrically realizing contrasts of up to 17 %. The underlying spin-dependent ionization dynamics are investigated expe rimentally and compared to Monte-Carlo simulations. This allows the identification of the conditions optimizing contrast and sensitivity which compare favorably with respect to optical detection.
We present an enhancement of spin properties of the shallow (<5nm) NV centers by using ALD to deposit titanium oxide layer on the diamond surface. With the oxide layer of an appropriate thickness, increases about 2 up to 3.5 times of both relaxation time and evolution time were achieved and the shallow NV center charge states stabilized as well. Moreover, the coherence time kept almost unchanged. This surface coating technique could produce a protective coating layer of controllable thickness without any damages to the solid quantum system surface, making it possible to prolong T1 time and T2* time, which would be a possible approach to the further packaging technique for the applicating solid quantum devices.
We report the experimental study of the temperature-dependence of the longitudinal spin relaxation time $T_1$ of single Nitrogen-Vacancy (NV) centers hosted in nanodiamonds. To determine the relaxation mechanisms at stake, measurements of the $T_1$ r elaxation time are performed for a set of individual NV centers both at room and cryogenic temperatures. The results are consistant with a temperature-dependent relaxation process which is attributed to a thermally-activated magnetic noise produced by paramagnetic impurities lying on the nanodiamond surface. These results confirm the existence of surface-induced spin relaxation processes occurring in nanodiamonds, which are relevant for future developments of sensitive nanoscale NV-based quantum sensors.
Diamond is a promising platform for the development of technological applications in quantum optics and photonics. The quest for color centers with optimal photo-physical properties has led in recent years to the search for novel impurity-related def ects in this material. Here, we report on a systematic investigation of the photo-physical properties of two He-related (HR) emission lines at 535 nm and 560 nm created in three different diamond substrates upon implantation with 1.3 MeV He+ ions and subsequent annealing. The spectral features of the HR centers were studied in an optical grade diamond substrate as a function of several physical parameters, namely the measurement temperature, the excitation wavelength and the intensity of external electric fields. The emission lifetimes of the 535 nm and 560 nm lines were also measured by means of time-gated photoluminescence measurements, yielding characteristic decay times of (29 +- 5) ns and (106 +- 10) ns, respectively. The Stark shifting of the HR centers under the application of an external electrical field was observed in a CVD diamond film equipped with buried graphitic electrodes, suggesting a lack of inversion symmetry in the defects structure. Furthermore, the photoluminescence mapping under 405 nm excitation of a detector grade diamond sample implanted at a 1x1010 cm-2 He+ ion fluence enabled to identify the spectral features of both the HR emission lines from the same localized optical spots. The reported results provide a first insight towards the understanding of the structure of He-related defects in diamond and their possible utilization in practical applications
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا