ﻻ يوجد ملخص باللغة العربية
We report on INTEGRAL observations of the soft $gamma$-ray repeater SGR 1935+2154 performed between 2020 April 28 and May 3. Several short bursts with fluence of $sim10^{-7}-10^{-6}$ erg cm$^{-2}$ were detected by the IBIS instrument in the 20-200 keV range. The burst with the hardest spectrum, discovered and localized in real time by the INTEGRAL Burst Alert System, was spatially and temporally coincident with a short and very bright radio burst detected by the CHIME and STARE2 radio telescopes at 400-800 MHz and 1.4 GHz, respectively. Its lightcurve shows three narrow peaks separated by $sim$29 ms time intervals, superimposed on a broad pulse lasting $sim$0.6 s. The brightest peak had a delay of 6.5$pm$1.0 ms with respect to the 1.4 GHz radio pulse (that coincides with the second and brightest component seen at lower frequencies). The burst spectrum, an exponentially cut-off power law with photon index $Gamma=0.7_{-0.2}^{+0.4}$ and peak energy $E_p=65pm5$ keV, is harder than those of the bursts usually observed from this and other magnetars. By the analysis of an expanding dust scattering ring seen in X-rays with the {it Neil Gehrels Swift Observatory} XRT instrument, we derived a distance of 4.4$_{-1.3}^{+2.8}$ kpc for SGR 1935+2154, independent of its possible association with the supernova remnant G57.2+0.8. At this distance, the burst 20-200 keV fluence of $(6.1pm 0.3)times10^{-7}$ erg cm$^{-2}$ corresponds to an isotropic emitted energy of $sim1.4times10^{39}$ erg. This is the first burst with a radio counterpart observed from a soft $gamma$-ray repeater and it strongly supports models based on magnetars that have been proposed for extragalactic fast radio bursts.
Fast radio bursts (FRBs) are millisecond-duration, bright radio signals (fluence $mathrm{0.1 - 100,Jy,ms}$) emitted from extragalactic sources of unknown physical origin. The recent CHIME/FRB and STARE2 detection of an extremely bright (fluence $sim$
Very recently, an extremely bright fast radio burst (FRB) 200428 with two sub-millisecond pulses was discovered to come from the direction of the Galactic magnetar SGR 1935+2154, and an X-ray burst (XRB) counterpart was detected simultaneously. These
A few years after its discovery as a magnetar, SGR J1935+2154 started a new burst-active phase on 2020 April 27, accompanied by a large enhancement of its X-ray persistent emission. Radio single bursts were detected during this activation, strengthen
We report on NICER observations of the Magnetar SGR~1935+2154, covering its 2020 burst storm and long-term persistent emission evolution up to $sim90$ days post outburst. During the first 1120~seconds taken on April 28 00:40:58 UTC we detect over 217
Magnetars have been proposed to be the origin of FRBs soon after its initial discovery. The detection of the first Galactic FRB 20200428 from SGR 1935+2154 has made this hypothesis more convincing. In October 2020, this source was supposed to be in a