ﻻ يوجد ملخص باللغة العربية
We obtain a Seiberg-Witten map for the gauge sector of multiple D$p$-branes in a large R-R $(p-1)$-form field background up to the first-order in the inverse R-R field background. By applying the Seiberg-Witten map and then electromagnetic duality on the non-commutative D3-brane theory in the large R-R 2-form background, we find the expected commutative diagram of the Seiberg-Witten map and electromagnetic duality. Extending the U(1) gauge group to the U($N$) gauge group, we obtain a commutative description of the D-branes in the large R-R field background. This construction is different from the known result.
A topological quantum field theory is introduced which reproduces the Seiberg-Witten invariants of four-manifolds. Dimensional reduction of this topological field theory leads to a new one in three dimensions. Its partition function yields a three-ma
We derive Seiberg-Witten like equations encoding the dynamics of N=2 ADE quiver gauge theories in presence of a non-trivial Omega-background along a two dimensional plane. The epsilon-deformed prepotential and the chiral correlators of the gauge theo
We derive a family of matrix models which encode solutions to the Seiberg-Witten theory in 4 and 5 dimensions. Partition functions of these matrix models are equal to the corresponding Nekrasov partition functions, and their spectral curves are the S
We consider N=2 supersymmetric gauge theories perturbed by tree level superpotential terms near isolated singular points in the Coulomb moduli space. We identify the Seiberg-Witten curve at these points with polynomial equations used to construct wha
Recently, the deviation of the ratios $R(D)$, $R(D^{*})$ and $R(J/psi)$ have been found between experimental data and the Standard Model predictions, which may be the hint of New Physics. In this work, we calculate these ratios within the Standard Mo