ﻻ يوجد ملخص باللغة العربية
We consider N=2 supersymmetric gauge theories perturbed by tree level superpotential terms near isolated singular points in the Coulomb moduli space. We identify the Seiberg-Witten curve at these points with polynomial equations used to construct what Grothendieck called dessins denfants or childrens drawings on the Riemann sphere. From a mathematical point of view, the dessins are important because the absolute Galois group Gal(bar{Q}/Q) acts faithfully on them. We argue that the relation between the dessins and Seiberg-Witten theory is useful because gauge theory criteria used to distinguish branches of N=1 vacua can lead to mathematical invariants that help to distinguish dessins belonging to different Galois orbits. For instance, we show that the confinement index defined in hep-th/0301006 is a Galois invariant. We further make some conjectures on the relation between Grothendiecks programme of classifying dessins into Galois orbits and the physics problem of classifying phases of N=1 gauge theories.
We derive Seiberg-Witten like equations encoding the dynamics of N=2 ADE quiver gauge theories in presence of a non-trivial Omega-background along a two dimensional plane. The epsilon-deformed prepotential and the chiral correlators of the gauge theo
We show how to map Grothendiecks dessins denfants to algebraic curves as Seiberg-Witten curves, then use the mirror map and the AGT map to obtain the corresponding 4d $mathcal{N}=2$ supersymmetric instanton partition functions and 2d Virasoro conform
We study the dynamics of a N=2 supersymmetric SU(N) gauge theory with fundamental or adjoint matter in presence of a non trivial Omega-background along a two dimensional plane. The prepotential and chiral correlators of the gauge theory can be obtain
We study limits of four-dimensional type II Calabi-Yau compactifications with vanishing four-cycle singularities, which are dual to $IT^2$ compactifications of the six-dimensional non-critical string with $E_8$ symmetry. We define proper subsectors o
We derive a family of matrix models which encode solutions to the Seiberg-Witten theory in 4 and 5 dimensions. Partition functions of these matrix models are equal to the corresponding Nekrasov partition functions, and their spectral curves are the S