ﻻ يوجد ملخص باللغة العربية
We derive a family of matrix models which encode solutions to the Seiberg-Witten theory in 4 and 5 dimensions. Partition functions of these matrix models are equal to the corresponding Nekrasov partition functions, and their spectral curves are the Seiberg-Witten curves of the corresponding theories. In consequence of the geometric engineering, the 5-dimensional case provides a novel matrix model formulation of the topological string theory on a wide class of non-compact toric Calabi-Yau manifolds. This approach also unifies and generalizes other matrix models, such as the Eguchi-Yang matrix model, matrix models for bundles over $P^1$, and Chern-Simons matrix models for lens spaces, which arise as various limits of our general result.
A topological quantum field theory is introduced which reproduces the Seiberg-Witten invariants of four-manifolds. Dimensional reduction of this topological field theory leads to a new one in three dimensions. Its partition function yields a three-ma
We consider N=2 supersymmetric gauge theories perturbed by tree level superpotential terms near isolated singular points in the Coulomb moduli space. We identify the Seiberg-Witten curve at these points with polynomial equations used to construct wha
We show how to map Grothendiecks dessins denfants to algebraic curves as Seiberg-Witten curves, then use the mirror map and the AGT map to obtain the corresponding 4d $mathcal{N}=2$ supersymmetric instanton partition functions and 2d Virasoro conform
In this contribution, we discuss the possibility of meta-stable supersymmetry (SUSY) breaking vacua in a perturbed Seiberg-Witten theory with Fayet-Iliopoulos (FI) term. We found meta-stable SUSY breaking vacua at the degenerated dyon and monopole si
We derive Seiberg-Witten like equations encoding the dynamics of N=2 ADE quiver gauge theories in presence of a non-trivial Omega-background along a two dimensional plane. The epsilon-deformed prepotential and the chiral correlators of the gauge theo