ترغب بنشر مسار تعليمي؟ اضغط هنا

First demonstration of 6 dB quantum noise reduction in a kilometer scale gravitational wave observatory

367   0   0.0 ( 0 )
 نشر من قبل James Lough
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف James Lough




اسأل ChatGPT حول البحث

Photon shot noise, arising from the quantum-mechanical nature of the light, currently limits the sensitivity of all the gravitational wave observatories at frequencies above one kilohertz. We report a successful application of squeezed vacuum states of light at the GEO,600 observatory and demonstrate for the first time a reduction of quantum noise up to $6.03 pm 0.02$ dB in a kilometer-scale interferometer. This is equivalent at high frequencies to increasing the laser power circulating in the interferometer by a factor of four. Achieving this milestone, a key goal for the upgrades of the advanced detectors, required a better understanding of the noise sources and losses, and implementation of robust control schemes to mitigate their contributions. In particular, we address the optical losses from beam propagation, phase noise from the squeezing ellipse, and backscattered light from the squeezed light source. The expertise gained from this work carried out at GEO 600 provides insight towards the implementation of 10 dB of squeezing envisioned for third-generation gravitational wave detectors.



قيم البحث

اقرأ أيضاً

We report the mirror suspension design for Large-scale Cryogenic Gravitational wave Telescope, KAGRA, during bKAGRA Phase 1. Mirror thermal noise is one of the fundamental noises for room-temperature gravitational-wave detectors such as Advanced LIGO and Advanced Virgo. Thus, reduction of thermal noise is required for further improvement of their sensitivity. One effective approach for reducing thermal noise is to cool the mirrors. There are many technical challenges that must be overcome to cool the mirrors, such as cryocooler induced vibrations, thermal drift in suspensions, and reduction in duty cycling due to the increased number of potential failure mechanisms. Our mirror suspension has a black coating that makes radiative cooling more efficient. For conduction cooling, we developed ultra high purity aluminum heat links, which yield high thermal conductivity while keeping the spring constant sufficiently small. A unique inclination adjustment system, called moving mass, is used for aligning the mirror orientation in pitch. Photo-reflective displacement sensors, which have a large range, are installed for damping control on marionette recoil mass and intermediate recoil mass. Samarium cobalt magnets are used for coil-magnet actuators to prevent significant change of magnetism between room temperature and cryogenic temperature. In this paper, the design of our first cryogenic payload and its performance during bKAGRA Phase 1 are discussed.
Coating thermal noise is a fundamental limit for precision experiments based on optical and quantum transducers. In this review, after a brief overview of the techniques for coating thermal noise measurements, we present the latest world-wide researc h activity on low-noise coatings, with a focus on the results obtained at the Laboratoire des Mat{e}riaux Avanc{e}s. We report new updated values for the Ta$_2$O$_5$, Ta$_2$O$_5$-TiO$_2$ and SiO$_2$ coatings of the Advanced LIGO, Advanced Virgo and KAGRA detectors, and new results from sputtered Nb$_2$O$_5$, TiO$_2$-Nb$_2$O$_5$, Ta$_2$O$_5$-ZrO$_2$, MgF$_2$, AlF$_3$ and silicon nitride coatings. Amorphous silicon, crystalline coatings, high-temperature deposition, multi-material coatings and composite layers are also briefly discussed, together with the latest developments of structural analyses and models.
Future ground-based gravitational-wave detectors are slated to detect black hole and neutron star collisions from the entire stellar history of the universe. To achieve the designed detector sensitivities, frequency noise from the laser source must b e reduced below the level achieved in current Advanced LIGO detectors. This paper reviews the laser frequency noise suppression scheme in Advanced LIGO, and quantifies the noise coupling to the gravitational-wave readout. The laser frequency noise incident on the current Advanced LIGO detectors is $8 times 10^{-5}~mathrm{Hz/sqrt{Hz}}$ at $1~mathrm{kHz}$. Future detectors will require even lower incident frequency noise levels to ensure this technical noise source does not limit sensitivity. The frequency noise requirement for a gravitational wave detector with arm lengths of $40~mathrm{km}$ is estimated to be $7 times 10^{-7}~mathrm{Hz/sqrt{Hz}}$. To reach this goal a new frequency noise suppression scheme is proposed, utilizing two input mode cleaner cavities, and the limits of this scheme are explored. Using this scheme the frequency noise requirement is met, even in pessimistic noise coupling scenarios.
KAGRA is a second-generation interferometric gravitational-wave detector with 3-km arms constructed at Kamioka, Gifu in Japan. It is now in its final installation phase, which we call bKAGRA (baseline KAGRA), with scientific observations expected to begin in late 2019. One of the advantages of KAGRA is its underground location of at least 200 m below the ground surface, which brings small seismic motion at low frequencies and high stability of the detector. Another advantage is that it cools down the sapphire test mass mirrors to cryogenic temperatures to reduce thermal noise. In April-May 2018, we have operated a 3-km Michelson interferometer with a cryogenic test mass for 10 days, which was the first time that km-scale interferometer was operated at cryogenic temperatures. In this article, we report the results of this bKAGRA Phase 1 operation. We have demonstrated the feasibility of 3-km interferometer alignment and control with cryogenic mirrors.
Gravitational-wave observations became commonplace in Advanced LIGO-Virgos recently concluded third observing run. 56 non-retracted candidates were identified and publicly announced in near real time. Gravitational waves from binary neutron star merg ers, however, remain of special interest since they can be precursors to high-energy astrophysical phenomena like $gamma$-ray bursts and kilonovae. While late-time electromagnetic emissions provide important information about the astrophysical processes within, the prompt emission along with gravitational waves uniquely reveals the extreme matter and gravity during - and in the seconds following - merger. Rapid communication of source location and properties from the gravitational-wave data is crucial to facilitate multi-messenger follow-up of such sources. This is especially enabled if the partner facilities are forewarned via an early-warning (pre-merger) alert. Here we describe the commissioning and performance of such a low-latency infrastructure within LIGO-Virgo. We present results from an end-to-end mock data challenge that detects binary neutron star mergers and alerts partner facilities before merger. We set expectations for these alerts in future observing runs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا