ترغب بنشر مسار تعليمي؟ اضغط هنا

Cryogenic suspension design for a kilometer-scale gravitational-wave detector

70   0   0.0 ( 0 )
 نشر من قبل Takafumi Ushiba
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the mirror suspension design for Large-scale Cryogenic Gravitational wave Telescope, KAGRA, during bKAGRA Phase 1. Mirror thermal noise is one of the fundamental noises for room-temperature gravitational-wave detectors such as Advanced LIGO and Advanced Virgo. Thus, reduction of thermal noise is required for further improvement of their sensitivity. One effective approach for reducing thermal noise is to cool the mirrors. There are many technical challenges that must be overcome to cool the mirrors, such as cryocooler induced vibrations, thermal drift in suspensions, and reduction in duty cycling due to the increased number of potential failure mechanisms. Our mirror suspension has a black coating that makes radiative cooling more efficient. For conduction cooling, we developed ultra high purity aluminum heat links, which yield high thermal conductivity while keeping the spring constant sufficiently small. A unique inclination adjustment system, called moving mass, is used for aligning the mirror orientation in pitch. Photo-reflective displacement sensors, which have a large range, are installed for damping control on marionette recoil mass and intermediate recoil mass. Samarium cobalt magnets are used for coil-magnet actuators to prevent significant change of magnetism between room temperature and cryogenic temperature. In this paper, the design of our first cryogenic payload and its performance during bKAGRA Phase 1 are discussed.



قيم البحث

اقرأ أيضاً

366 - James Lough 2020
Photon shot noise, arising from the quantum-mechanical nature of the light, currently limits the sensitivity of all the gravitational wave observatories at frequencies above one kilohertz. We report a successful application of squeezed vacuum states of light at the GEO,600 observatory and demonstrate for the first time a reduction of quantum noise up to $6.03 pm 0.02$ dB in a kilometer-scale interferometer. This is equivalent at high frequencies to increasing the laser power circulating in the interferometer by a factor of four. Achieving this milestone, a key goal for the upgrades of the advanced detectors, required a better understanding of the noise sources and losses, and implementation of robust control schemes to mitigate their contributions. In particular, we address the optical losses from beam propagation, phase noise from the squeezing ellipse, and backscattered light from the squeezed light source. The expertise gained from this work carried out at GEO 600 provides insight towards the implementation of 10 dB of squeezing envisioned for third-generation gravitational wave detectors.
467 - R. Ren , C. Bathurst , Y.Y. Chang 2020
We present the design and characterization of a cryogenic phonon-sensitive 1-gram Si detector exploiting the Neganov-Trofimov-Luke effect to detect single-charge excitations. This device achieved 2.65(2)~eV phonon energy resolution when operated with out a voltage bias across the crystal and a corresponding charge resolution of 0.03 electron-hole pairs at 100~V bias. With a continuous-readout data acquisition system and an offline optimum-filter trigger, we obtain a 9.2~eV threshold with a trigger rate of the order of 20~Hz. The detectors energy scale is calibrated up to 120~keV using an energy estimator based on the pulse area. The high performance of this device allows its application to different fields where excellent energy resolution, low threshold, and large dynamic range are required, including dark matter searches, precision measurements of coherent neutrino-nucleus scattering, and ionization yield measurements.
377 - Kentaro Somiya 2011
Construction of the Japanese second-generation gravitational-wave detector KAGRA has been started. In the next 6 sim 7 years, we will be able to observe the space-time ripple from faraway galaxies. KAGRA is equipped with the latest advanced technolog ies. The entire 3-km long detector is located in the underground to be isolated from the seismic motion, the core optics are cooled down to 20 K to reduce thermal fluctuations, and quantum non-demolition techniques are used to decrease quantum noise. In this paper, we introduce the detector configuration of KAGRA; its design, strategy, and downselection of parameters.
As part of an experiment to measure the spectrum of photons emitted in beta-decay of the free neutron, we developed and operated a detector consisting of 12 bismuth germanate (BGO) crystals coupled to avalanche photodiodes (APDs). The detector was op erated near liquid nitrogen temperature in the bore of a superconducting magnet and registered photons with energies from 5 keV to 1000 keV. To enlarge the detection range, we also directly detected soft X-rays with energies between 0.2 keV and 20 keV with three large area APDs. The construction and operation of the detector is presented, as well as information on operation of APDs at cryogenic temperatures.
The energy threshold of a cryogenic calorimeter can be lowered by reducing its size. This is of importance since the resulting increase in signal rate enables new approaches in rare-event searches, including the detection of MeV mass dark matter and coherent scattering of reactor or solar neutrinos. A scaling law for energy threshold vs. detector size is given. We analyze the possibility of lowering the threshold of a gram-scale cryogenic calorimeter to the few eV regime. A prototype 0.5 g Al$_2$O$_3$ device achieved an energy threshold of (${19.7pm0.1}$) eV, the lowest value reported for a macroscopic calorimeter.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا