ﻻ يوجد ملخص باللغة العربية
We revisit the modeling of the diauxic growth of a pure microorganism on two distinct sugars which was first described by Monod. Most available models are deterministic and make the assumption that all cells of the microbial ecosystem behave homogeneously with respect to both sugars, all consuming the first one and then switching to the second when the first is exhausted. We propose here a stochastic model which describes what is called metabolic heterogeneity. It allows to consider small populations as in microfluidics as well as large populations where billions of individuals coexist in the medium in a batch or chemostat. We highlight the link between the stochastic model and the deterministic behavior in real large cultures using a large population approximation. Then the influence of model parameter values on model dynamics is studied, notably with respect to the lag-phase observed in real systems depending on the sugars on which the microorganism grows. It is shown that both metabolic parameters as well as initial conditions play a crucial role on system dynamics.
Phenotypic variation is a hallmark of cellular physiology. Metabolic heterogeneity, in particular, underpins single-cell phenomena such as microbial drug tolerance and growth variability. Much research has focussed on transcriptomic and proteomic het
By challenging E. coli with sublethal norfloxacin for 10 days, Henry Lee and James Collins suggests the bacterial altruism leads to the population-wide resistance. By detailedly analyzing experiment data, we suggest that bacterial cooperation leads t
While most processes in biology are highly deterministic, stochastic mechanisms are sometimes used to increase cellular diversity, such as in the specification of sensory receptors. In the human and Drosophila eye, photoreceptors sensitive to various
The fundamental models of epidemiology describe the progression of an infectious disease through a population using compartmentalized differential equations, but do not incorporate population-level heterogeneity in infection susceptibility. We show t
A wide range of applications and research has been done with genome-scale metabolic models. In this work we describe a methodology for comparing metabolic networks constructed from genome-scale metabolic models and how to apply this comparison in ord