ﻻ يوجد ملخص باللغة العربية
We investigate two approaches to derive the proper Floquet-based quantum-classical Liouville equation (F-QCLE) for laser-driven electron-nuclear dynamics. The first approach projects the operator form of the standard QCLE onto the diabatic Floquet basis, then transforms to the adiabatic representation. The second approach directly projects the QCLE onto the Floquet adiabatic basis. Both approaches yield a form which is similar to the usual QCLE with two modifications: 1. The electronic degrees of freedom are expanded to infinite dimension. 2. The nuclear motion follows Floquet quasi-energy surfaces. However, the second approach includes an additional cross derivative force due to the dual dependence on time and nuclear motion of the Floquet adiabatic states. Our analysis and numerical tests indicate that this cross derivative force is a factitious artifact, suggesting that one cannot safely exchange the order of Floquet state projection with adiabatic transformation. Our results are in accord with similar findings by Izmaylov et al., who found that transforming to the adiabatic representation must always be the last operation applied, though now we have extended this result to a time-dependent Hamiltonian. This paper and the proper derivation of the F-QCLE should lay the basis for further improvements of Floquet surface hopping.
Although the quantum classical Liouville equation (QCLE) arises by cutting off the exact equation of motion for a coupled nuclear-electronic system at order 1 (1 = $hbar^0$ ), we show that the QCLE does include Berrys phase effects and Berrys forces
Trajectory surface hopping (TSH) is one of the most widely used quantum-classical algorithms for nonadiabatic molecular dynamics. Despite its empirical effectiveness and popularity, a rigorous derivation of TSH as the classical limit of a combined qu
We employ various quantum-mechanical approaches for studying the impact of electric fields on both nonretarded and retarded noncovalent interactions between atoms or molecules. To this end, we apply perturbative and non-perturbative methods within th
Hydrogen diffusion on metals exhibits rich quantum behavior, which is not yet fully understood. Using simulations, we show that many hydrogen diffusion barriers can be categorized into those with parabolic-tops and those with broad-tops. With parabol
We present a preliminary extension of the fewest switches surface hopping (FSSH) algorithm to the case of complex Hamiltonians as appropriate for modeling the dynamics of photoexcited molecules in magnetic fields. We make ansatze for the direction of