ﻻ يوجد ملخص باللغة العربية
We employ various quantum-mechanical approaches for studying the impact of electric fields on both nonretarded and retarded noncovalent interactions between atoms or molecules. To this end, we apply perturbative and non-perturbative methods within the frameworks of quantum mechanics (QM) as well as quantum electrodynamics (QED). In addition, to provide a transparent physical picture of the different types of resulting interactions, we employ a stochastic electrodynamic approach based on the zero-point fluctuating field. Atomic response properties are described via harmonic Drude oscillators - an efficient model system that permits an analytical solution and has been convincingly shown to yield accurate results when modeling non-retarded intermolecular interactions. The obtained intermolecular energy contributions are classified as field-induced (FI) electrostatics, FI polarization, and dispersion interactions. The interplay between these three types of interactions enables the manipulation of molecular dimer conformations by applying transversal or longitudinal electric fields along the intermolecular axis. Our framework combining four complementary theoretical approaches paves the way toward a systematic description and improved understanding of molecular interactions when molecules are subject to both external and vacuum fields.
Retarded electromagnetic potentials are derived from Maxwells equations and the Lorenz condition. The difference found between these potentials and the conventional Li{e}nard-Wiechert ones is explained by neglect, for the latter, of the motion-depend
In Grossu et al. (2012) we presented a Chaos Many-Body Engine (CMBE) toy-model for chaos analysis of relativistic nuclear collisions at 4.5 A GeV/c (the SKM 200 collaboration) which was later extended to Cu + Cu collisions at the maximum BNL energy.
We study the interaction between two neutral atoms or molecules subject to a uniform static electric field, using quantum mechanics (QM) and quantum electrodynamics (QED) applied to coupled harmonic Drude oscillators. Our focus is to understand the i
We calculate exactly the Casimir force or dispersive force, in the non-retarded limit, between a spherical nanoparticle and a substrate beyond the Londons or dipolar approximation. We find that the force is a non-monotonic function of the distance be
An approach is outline to constructing an optical potential that includes the effects of antisymmetry and target recoil. it is based on the retarded Greens function, which could make it a better starting point for applications to direct nuclear react