ﻻ يوجد ملخص باللغة العربية
Although the quantum classical Liouville equation (QCLE) arises by cutting off the exact equation of motion for a coupled nuclear-electronic system at order 1 (1 = $hbar^0$ ), we show that the QCLE does include Berrys phase effects and Berrys forces (which are proportional to a higher order, $hbar$ = $hbar^1$ ). Thus, the fundamental equation underlying mixed quantum-classical dynamics does not need a correction for Berrys phase effects and is valid for the case of complex Hamiltonians. Furthermore, we also show that, even though Tullys surface hopping model ignores Berrys phase, Berrys phase effects are included automatically within Ehrenfest dynamics. These findings should be of great importance if we seek to model coupled nuclear-electronic dynamics for systems with spin-orbit coupling, where the complex nature of the Hamiltonian is paramount.
We investigate two approaches to derive the proper Floquet-based quantum-classical Liouville equation (F-QCLE) for laser-driven electron-nuclear dynamics. The first approach projects the operator form of the standard QCLE onto the diabatic Floquet ba
The geometric phase has been proposed as a candidate for noise resilient coherent manipulation of fragile quantum systems. Since it is determined only by the path of the quantum state, the presence of noise fluctuations affects the geometric phase in
Recently the question of whether the D-Wave processors exhibit large-scale quantum behavior or can be described by a classical model has attracted significant interest. In this work we address this question by studying a 503 qubit D-Wave Two device i
In this note, we study Liouville type theorem for conformal Gaussian curvature equation (also called the mean field equation) $$ -Delta u=K(x)e^u, in R^2 $$ where $K(x)$ is a smooth function on $R^2$. When $K(x)=K(x_1)$ is a sign-changing smooth func
We present a preliminary extension of the fewest switches surface hopping (FSSH) algorithm to the case of complex Hamiltonians as appropriate for modeling the dynamics of photoexcited molecules in magnetic fields. We make ansatze for the direction of