ﻻ يوجد ملخص باللغة العربية
Multi-access Edge Computing (MEC) facilitates the deployment of critical applications with stringent QoS requirements, latency in particular. This paper considers the problem of jointly planning the availability of computational resources at the edge, the slicing of mobile network and edge computation resources, and the routing of heterogeneous traffic types to the various slices. These aspects are intertwined and must be addressed together to provide the desired QoS to all mobile users and traffic types still keeping costs under control. We formulate our problem as a mixed-integer nonlinear program (MINLP) and we define a heuristic, named Neighbor Exploration and Sequential Fixing (NESF), to facilitate the solution of the problem. The approach allows network operators to fine tune the network operation cost and the total latency experienced by users. We evaluate the performance of the proposed model and heuristic against two natural greedy approaches. We show the impact of the variation of all the considered parameters (viz., different types of traffic, tolerable latency, network topology and bandwidth, computation and link capacity) on the defined model. Numerical results demonstrate that NESF is very effective, achieving near-optimal planning and resource allocation solutions in a very short computing time even for large-scale network scenarios.
Bandwidth slicing is introduced to support federated learning in edge computing to assure low communication delay for training traffic. Results reveal that bandwidth slicing significantly improves training efficiency while achieving good learning accuracy.
By pushing computation, cache, and network control to the edge, mobile edge computing (MEC) is expected to play a leading role in fifth generation (5G) and future sixth generation (6G). Nevertheless, facing ubiquitous fast-growing computational deman
Recently, along with the rapid development of mobile communication technology, edge computing theory and techniques have been attracting more and more attentions from global researchers and engineers, which can significantly bridge the capacity of cl
Age of Information (AoI), defined as the time elapsed since the generation of the latest received update, is a promising performance metric to measure data freshness for real-time status monitoring. In many applications, status information needs to b
With the advent of the Internet-of-Things (IoT), vehicular networks and cyber-physical systems, the need for real-time data processing and analysis has emerged as an essential pre-requite for customers satisfaction. In this direction, Mobile Edge Com