ترغب بنشر مسار تعليمي؟ اضغط هنا

Joint Planning of Network Slicing and Mobile Edge Computing: Models and Algorithms

282   0   0.0 ( 0 )
 نشر من قبل Bin Xiang
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Multi-access Edge Computing (MEC) facilitates the deployment of critical applications with stringent QoS requirements, latency in particular. This paper considers the problem of jointly planning the availability of computational resources at the edge, the slicing of mobile network and edge computation resources, and the routing of heterogeneous traffic types to the various slices. These aspects are intertwined and must be addressed together to provide the desired QoS to all mobile users and traffic types still keeping costs under control. We formulate our problem as a mixed-integer nonlinear program (MINLP) and we define a heuristic, named Neighbor Exploration and Sequential Fixing (NESF), to facilitate the solution of the problem. The approach allows network operators to fine tune the network operation cost and the total latency experienced by users. We evaluate the performance of the proposed model and heuristic against two natural greedy approaches. We show the impact of the variation of all the considered parameters (viz., different types of traffic, tolerable latency, network topology and bandwidth, computation and link capacity) on the defined model. Numerical results demonstrate that NESF is very effective, achieving near-optimal planning and resource allocation solutions in a very short computing time even for large-scale network scenarios.



قيم البحث

اقرأ أيضاً

127 - Jun Li , Xiaoman Shen , Lei Chen 2019
Bandwidth slicing is introduced to support federated learning in edge computing to assure low communication delay for training traffic. Results reveal that bandwidth slicing significantly improves training efficiency while achieving good learning accuracy.
202 - Zhen Qin , Hai Wang , Yuben Qu 2021
By pushing computation, cache, and network control to the edge, mobile edge computing (MEC) is expected to play a leading role in fifth generation (5G) and future sixth generation (6G). Nevertheless, facing ubiquitous fast-growing computational deman ds, it is impossible for a single MEC paradigm to effectively support high-quality intelligent services at end user equipments (UEs). To address this issue, we propose an air-ground collaborative MEC (AGC-MEC) architecture in this article. The proposed AGC-MEC integrates all potentially available MEC servers within air and ground in the envisioned 6G, by a variety of collaborative ways to provide computation services at their best for UEs. Firstly, we introduce the AGC-MEC architecture and elaborate three typical use cases. Then, we discuss four main challenges in the AGC-MEC as well as their potential solutions. Next, we conduct a case study of collaborative service placement for AGC-MEC to validate the effectiveness of the proposed collaborative service placement strategy. Finally, we highlight several potential research directions of the AGC-MEC.
Recently, along with the rapid development of mobile communication technology, edge computing theory and techniques have been attracting more and more attentions from global researchers and engineers, which can significantly bridge the capacity of cl oud and requirement of devices by the network edges, and thus can accelerate the content deliveries and improve the quality of mobile services. In order to bring more intelligence to the edge systems, compared to traditional optimization methodology, and driven by the current deep learning techniques, we propose to integrate the Deep Reinforcement Learning techniques and Federated Learning framework with the mobile edge systems, for optimizing the mobile edge computing, caching and communication. And thus, we design the In-Edge AI framework in order to intelligently utilize the collaboration among devices and edge nodes to exchange the learning parameters for a better training and inference of the models, and thus to carry out dynamic system-level optimization and application-level enhancement while reducing the unnecessary system communication load. In-Edge AI is evaluated and proved to have near-optimal performance but relatively low overhead of learning, while the system is cognitive and adaptive to the mobile communication systems. Finally, we discuss several related challenges and opportunities for unveiling a promising upcoming future of In-Edge AI.
Age of Information (AoI), defined as the time elapsed since the generation of the latest received update, is a promising performance metric to measure data freshness for real-time status monitoring. In many applications, status information needs to b e extracted through computing, which can be processed at an edge server enabled by mobile edge computing (MEC). In this paper, we aim to minimize the average AoI within a given deadline by jointly scheduling the transmissions and computations of a series of update packets with deterministic transmission and computing times. The main analytical results are summarized as follows. Firstly, the minimum deadline to guarantee the successful transmission and computing of all packets is given. Secondly, a emph{no-wait computing} policy which intuitively attains the minimum AoI is introduced, and the feasibility condition of the policy is derived. Finally, a closed-form optimal scheduling policy is obtained on the condition that the deadline exceeds a certain threshold. The behavior of the optimal transmission and computing policy is illustrated by numerical results with different values of the deadline, which validates the analytical results.
With the advent of the Internet-of-Things (IoT), vehicular networks and cyber-physical systems, the need for real-time data processing and analysis has emerged as an essential pre-requite for customers satisfaction. In this direction, Mobile Edge Com puting (MEC) provides seamless services with reduced latency, enhanced mobility, and improved location awareness. Since MEC has evolved from Cloud Computing, it inherited numerous security and privacy issues from the latter. Further, decentralized architectures and diversified deployment environments used in MEC platforms also aggravate the problem; causing great concerns for the research fraternity. Thus, in this paper, we propose an efficient and lightweight mutual authentication protocol for MEC environments; based on Elliptic Curve Cryptography (ECC), one-way hash functions and concatenation operations. The designed protocol also leverages the advantages of discrete logarithm problems, computational Diffie-Hellman, random numbers and time-stamps to resist various attacks namely-impersonation attacks, replay attacks, man-in-the-middle attacks, etc. The paper also presents a comparative assessment of the proposed scheme relative to the current state-of-the-art schemes. The obtained results demonstrate that the proposed scheme incurs relatively less communication and computational overheads, and is appropriate to be adopted in resource constraint MEC environments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا