ترغب بنشر مسار تعليمي؟ اضغط هنا

Bandwidth Slicing to Boost Federated Learning in Edge Computing

128   0   0.0 ( 0 )
 نشر من قبل Jun Li
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Bandwidth slicing is introduced to support federated learning in edge computing to assure low communication delay for training traffic. Results reveal that bandwidth slicing significantly improves training efficiency while achieving good learning accuracy.

قيم البحث

اقرأ أيضاً

This paper studies a federated learning (FL) system, where textit{multiple} FL services co-exist in a wireless network and share common wireless resources. It fills the void of wireless resource allocation for multiple simultaneous FL services in the existing literature. Our method designs a two-level resource allocation framework comprising emph{intra-service} resource allocation and emph{inter-service} resource allocation. The intra-service resource allocation problem aims to minimize the length of FL rounds by optimizing the bandwidth allocation among the clients of each FL service. Based on this, an inter-service resource allocation problem is further considered, which distributes bandwidth resources among multiple simultaneous FL services. We consider both cooperative and selfish providers of the FL services. For cooperative FL service providers, we design a distributed bandwidth allocation algorithm to optimize the overall performance of multiple FL services, meanwhile cater to the fairness among FL services and the privacy of clients. For selfish FL service providers, a new auction scheme is designed with the FL service owners as the bidders and the network provider as the auctioneer. The designed auction scheme strikes a balance between the overall FL performance and fairness. Our simulation results show that the proposed algorithms outperform other benchmarks under various network conditions.
We investigate a cooperative federated learning framework among devices for mobile edge computing, named CFLMEC, where devices co-exist in a shared spectrum with interference. Keeping in view the time-average network throughput of cooperative federat ed learning framework and spectrum scarcity, we focus on maximize the admission data to the edge server or the near devices, which fills the gap of communication resource allocation for devices with federated learning. In CFLMEC, devices can transmit local models to the corresponding devices or the edge server in a relay race manner, and we use a decomposition approach to solve the resource optimization problem by considering maximum data rate on sub-channel, channel reuse and wireless resource allocation in which establishes a primal-dual learning framework and batch gradient decent to learn the dynamic network with outdated information and predict the sub-channel condition. With aim at maximizing throughput of devices, we propose communication resource allocation algorithms with and without sufficient sub-channels for strong reliance on edge servers (SRs) in cellular link, and interference aware communication resource allocation algorithm for less reliance on edge servers (LRs) in D2D link. Extensive simulation results demonstrate the CFLMEC can achieve the highest throughput of local devices comparing with existing works, meanwhile limiting the number of the sub-channels.
The popular federated edge learning (FEEL) framework allows privacy-preserving collaborative model training via frequent learning-updates exchange between edge devices and server. Due to the constrained bandwidth, only a subset of devices can upload their updates at each communication round. This has led to an active research area in FEEL studying the optimal device scheduling policy for minimizing communication time. However, owing to the difficulty in quantifying the exact communication time, prior work in this area can only tackle the problem partially by considering either the communication rounds or per-round latency, while the total communication time is determined by both metrics. To close this gap, we make the first attempt in this paper to formulate and solve the communication time minimization problem. We first derive a tight bound to approximate the communication time through cross-disciplinary effort involving both learning theory for convergence analysis and communication theory for per-round latency analysis. Building on the analytical result, an optimized probabilistic scheduling policy is derived in closed-form by solving the approximate communication time minimization problem. It is found that the optimized policy gradually turns its priority from suppressing the remaining communication rounds to reducing per-round latency as the training process evolves. The effectiveness of the proposed scheme is demonstrated via a use case on collaborative 3D objective detection in autonomous driving.
Recently, along with the rapid development of mobile communication technology, edge computing theory and techniques have been attracting more and more attentions from global researchers and engineers, which can significantly bridge the capacity of cl oud and requirement of devices by the network edges, and thus can accelerate the content deliveries and improve the quality of mobile services. In order to bring more intelligence to the edge systems, compared to traditional optimization methodology, and driven by the current deep learning techniques, we propose to integrate the Deep Reinforcement Learning techniques and Federated Learning framework with the mobile edge systems, for optimizing the mobile edge computing, caching and communication. And thus, we design the In-Edge AI framework in order to intelligently utilize the collaboration among devices and edge nodes to exchange the learning parameters for a better training and inference of the models, and thus to carry out dynamic system-level optimization and application-level enhancement while reducing the unnecessary system communication load. In-Edge AI is evaluated and proved to have near-optimal performance but relatively low overhead of learning, while the system is cognitive and adaptive to the mobile communication systems. Finally, we discuss several related challenges and opportunities for unveiling a promising upcoming future of In-Edge AI.
In Federated Learning (FL), a global statistical model is developed by encouraging mobile users to perform the model training on their local data and aggregating the output local model parameters in an iterative manner. However, due to limited energy and computation capability at the mobile devices, the performance of the model training is always at stake to meet the objective of local energy minimization. In this regard, Multi-access Edge Computing (MEC)-enabled FL addresses the tradeoff between the model performance and the energy consumption of the mobile devices by allowing users to offload a portion of their local dataset to an edge server for the model training. Since the edge server has high computation capability, the time consumption of the model training at the edge server is insignificant. However, the time consumption for dataset offloading from mobile users to the edge server has a significant impact on the total time consumption. Thus, resource management in MEC-enabled FL is challenging, where the objective is to reduce the total time consumption while saving the energy consumption of the mobile devices. In this paper, we formulate an energy-aware resource management for MEC-enabled FL in which the model training loss and the total time consumption are jointly minimized, while considering the energy limitation of mobile devices. In addition, we recast the formulated problem as a Generalized Nash Equilibrium Problem (GNEP) to capture the coupling constraints between the radio resource management and dataset offloading. We then analyze the impact of the dataset offloading and computing resource allocation on the model training loss, time, and the energy consumption.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا