ﻻ يوجد ملخص باللغة العربية
The novel coronavirus disease (COVID-19) has rapidly spread around the globe in 2020, with the U.S. becoming the epicenter of COVID-19 cases since late March. As the U.S. begins to gradually resume economic activity, it is imperative for policymakers and power system operators to take a scientific approach to understanding and predicting the impact on the electricity sector. Here, we release a first-of-its-kind cross-domain open-access data hub, integrating data from across all existing U.S. wholesale electricity markets with COVID-19 case, weather, cellular location, and satellite imaging data. Leveraging cross-domain insights from public health and mobility data, we uncover a significant reduction in electricity consumption across that is strongly correlated with the rise in the number of COVID-19 cases, degree of social distancing, and level of commercial activity.
With the approval of vaccines for the coronavirus disease by many countries worldwide, most developed nations have begun, and developing nations are gearing up for the vaccination process. This has created an urgent need to provide a solution to opti
In 2020, the COVID-19 pandemic spreads all over the world. In order to alleviate the spread of the epidemic, various blockade policies have been implemented in many areas. In order to formulate a better epidemic prevention policy for urban energy con
Disruptions resulting from an epidemic might often appear to amount to chaos but, in reality, can be understood in a systematic way through the lens of epidemic psychology. According to Philip Strong, the founder of the sociological study of epidemic
In this paper we propose a data-driven model for the spread of SARS-CoV-2 and use it to design optimal control strategies of human-mobility restrictions that both curb the epidemic and minimize the economic costs associated with implementing non-phar
This paper investigates the impact of the COVID-19 pandemic on the insurance industry in the Republic of North Macedonia during the first half of 2020. By utilizing seasonal autoregressive models and data for 11 insurance classes, we find that the in