ترغب بنشر مسار تعليمي؟ اضغط هنا

A Cross-Domain Approach to Analyzing the Short-Run Impact of COVID-19 on the U.S. Electricity Sector

66   0   0.0 ( 0 )
 نشر من قبل Dongqi Wu
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The novel coronavirus disease (COVID-19) has rapidly spread around the globe in 2020, with the U.S. becoming the epicenter of COVID-19 cases since late March. As the U.S. begins to gradually resume economic activity, it is imperative for policymakers and power system operators to take a scientific approach to understanding and predicting the impact on the electricity sector. Here, we release a first-of-its-kind cross-domain open-access data hub, integrating data from across all existing U.S. wholesale electricity markets with COVID-19 case, weather, cellular location, and satellite imaging data. Leveraging cross-domain insights from public health and mobility data, we uncover a significant reduction in electricity consumption across that is strongly correlated with the rise in the number of COVID-19 cases, degree of social distancing, and level of commercial activity.



قيم البحث

اقرأ أيضاً

With the approval of vaccines for the coronavirus disease by many countries worldwide, most developed nations have begun, and developing nations are gearing up for the vaccination process. This has created an urgent need to provide a solution to opti mally distribute the available vaccines once they are received by the authorities. In this paper, we propose a clustering-based solution to select optimal distribution centers and a Constraint Satisfaction Problem framework to optimally distribute the vaccines taking into consideration two factors namely priority and distance. We demonstrate the efficiency of the proposed models using real-world data obtained from the district of Chennai, India. The model provides the decision making authorities with optimal distribution centers across the district and the optimal allocation of individuals across these distribution centers with the flexibility to accommodate a wide range of demographics.
In 2020, the COVID-19 pandemic spreads all over the world. In order to alleviate the spread of the epidemic, various blockade policies have been implemented in many areas. In order to formulate a better epidemic prevention policy for urban energy con sumption of the commercial tourism cities, this paper first analyses the energy characteristics of Macao during the epidemic period from two aspects, based on the energy consumption data of Macao. On this basis, the power consumption characteristics of commercial tourism cities during the epidemic were analyzed. Then, this paper provides analysis of the characteristics of the energy consumption in different fields of commercial tourism cities from the aspects of hotel, transportation, tourism culture and public utilities. Finally, a detailed analysis of the energy consumption characteristics of commercial tourism cities represented by Macao during the epidemic period is provided, by comparing with some typical countries.
Disruptions resulting from an epidemic might often appear to amount to chaos but, in reality, can be understood in a systematic way through the lens of epidemic psychology. According to Philip Strong, the founder of the sociological study of epidemic infectious diseases, not only is an epidemic biological; there is also the potential for three psycho-social epidemics: of fear, moralization, and action. This work empirically tests Strongs model at scale by studying the use of language of 122M tweets related to the COVID-19 pandemic posted in the U.S. during the whole year of 2020. On Twitter, we identified three distinct phases. Each of them is characterized by different regimes of the three psycho-social epidemics. In the refusal phase, users refused to accept reality despite the increasing number of deaths in other countries. In the anger phase (started after the announcement of the first death in the country), users fear translated into anger about the looming feeling that things were about to change. Finally, in the acceptance phase, which began after the authorities imposed physical-distancing measures, users settled into a new normal for their daily activities. Overall, refusal of accepting reality gradually died off as the year went on, while acceptance increasingly took hold. During 2020, as cases surged in waves, so did anger, re-emerging cyclically at each wave. Our real-time operationalization of Strongs model is designed in a way that makes it possible to embed epidemic psychology into real-time models (e.g., epidemiological and mobility models).
In this paper we propose a data-driven model for the spread of SARS-CoV-2 and use it to design optimal control strategies of human-mobility restrictions that both curb the epidemic and minimize the economic costs associated with implementing non-phar maceutical interventions. We develop an extension of the SEIR epidemic model that captures the effects of changes in human mobility on the spread of the disease. The parameters of our data-driven model are learned using a multitask learning approach that leverages both data on the number of deaths across a set of regions, and cellphone data on individuals mobility patterns specific to each region. We propose an optimal control problem on this data-driven model with a tractable solution provided by geometric programming. The result of this framework is a mobility-based intervention strategy that curbs the spread of the epidemic while obeying a budget on the economic cost incurred. Furthermore, in the absence of a straightforward mapping from human mobility data to economic costs, we propose a practical method by which a budget on economic losses incurred may be chosen to eliminate excess deaths due to over-utilization of hospital resources. Our results are demonstrated with numerical simulations using real data from the Philadelphia metropolitan area.
This paper investigates the impact of the COVID-19 pandemic on the insurance industry in the Republic of North Macedonia during the first half of 2020. By utilizing seasonal autoregressive models and data for 11 insurance classes, we find that the in surance activity shrank by more than 10% compared to what was expected. The total loss in the industry was, however, much less than the amount of funds made available by the Insurance Supervision Agency. This was because the pandemic induced changes in the activity structure - the share of Motor vehicles class fell at the expense of the property classes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا