ترغب بنشر مسار تعليمي؟ اضغط هنا

The Impact of COVID-19 on Urban Energy Consumption of the Commercial Tourism City

155   0   0.0 ( 0 )
 نشر من قبل Hongyu Zhu
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

In 2020, the COVID-19 pandemic spreads all over the world. In order to alleviate the spread of the epidemic, various blockade policies have been implemented in many areas. In order to formulate a better epidemic prevention policy for urban energy consumption of the commercial tourism cities, this paper first analyses the energy characteristics of Macao during the epidemic period from two aspects, based on the energy consumption data of Macao. On this basis, the power consumption characteristics of commercial tourism cities during the epidemic were analyzed. Then, this paper provides analysis of the characteristics of the energy consumption in different fields of commercial tourism cities from the aspects of hotel, transportation, tourism culture and public utilities. Finally, a detailed analysis of the energy consumption characteristics of commercial tourism cities represented by Macao during the epidemic period is provided, by comparing with some typical countries.



قيم البحث

اقرأ أيضاً

The ongoing COVID-19 pandemic has created a global crisis of massive scale. Prior research indicates that human mobility is one of the key factors involved in viral spreading. Indeed, in a connected planet, rapid world-wide spread is enabled by long- distance air-, land- and sea-transportation among countries and continents, and subsequently fostered by commuting trips within densely populated cities. While early travel restrictions contribute to delayed disease spread, their utility is much reduced if the disease has a long incubation period or if there is asymptomatic transmission. Given the lack of vaccines, public health officials have mainly relied on non-pharmaceutical interventions, including social distancing measures, curfews, and stay-at-home orders. Here we study the impact of city organization on its susceptibility to disease spread, and amenability to interventions. Cities can be classified according to their mobility in a spectrum between compact-hierarchical and decentralized-sprawled. Our results show that even though hierarchical cities are more susceptible to the rapid spread of epidemics, their organization makes mobility restrictions quite effective. Conversely, sprawled cities are characterized by a much slower initial spread, but are less responsive to mobility restrictions. These findings hold globally across cities in diverse geographical locations and a broad range of sizes. Our empirical measurements are confirmed by a simulation of COVID-19 spread in urban areas through a compartmental model. These results suggest that investing resources on early monitoring and prompt ad-hoc interventions in more vulnerable cities may prove most helpful in containing and reducing the impact of present and future pandemics.
Measuring traffic performance is critical for public agencies who manage traffic and individuals who plan trips, especially when special events happen. The COVID-19 pandemic has significantly influenced almost every aspect of daily life, including ur ban traffic patterns. Thus, it is important to measure the impact of COVID-19 on transportation to further guide agencies and residents to properly respond to changes in traffic patterns. However, most existing traffic performance metrics incorporate only a single traffic parameter and measure only the performance of individual corridors. To overcome these challenges, in this study, a Traffic Performance Score (TPS) is proposed that incorporates multiple parameters for measuring network-wide traffic performance. An interactive web-based TPS platform that provides real-time and historical spatial-temporal traffic performance analysis is developed by the STAR Lab at the University of Washington. Based on data from this platform, this study analyzes the impact of COVID-19 on different road segments and the traffic network as a whole. Considering this pandemic has greatly reshaped social and economic operations, this study also evaluates how COVID-19 is changing the urban mobility from both travel demand and driving behavior perspectives.
The current outbreak of the coronavirus disease 2019 (COVID-19) is an unprecedented example of how fast an infectious disease can spread around the globe (especially in urban areas) and the enormous impact it causes on public health and socio-economi c activities. Despite the recent surge of investigations about different aspects of the COVID-19 pandemic, we still know little about the effects of city size on the propagation of this disease in urban areas. Here we investigate how the number of cases and deaths by COVID-19 scale with the population of Brazilian cities. Our results indicate small towns are proportionally more affected by COVID-19 during the initial spread of the disease, such that the cumulative numbers of cases and deaths per capita initially decrease with population size. However, during the long-term course of the pandemic, this urban advantage vanishes and large cities start to exhibit higher incidence of cases and deaths, such that every 1% rise in population is associated with a 0.14% increase in the number of fatalities per capita after about four months since the first two daily deaths. We argue that these patterns may be related to the existence of proportionally more health infrastructure in the largest cities and a lower proportion of older adults in large urban areas. We also find the initial growth rate of cases and deaths to be higher in large cities; however, these growth rates tend to decrease in large cities and to increase in small ones over time.
The advent of shared-economy and smartphones made on-demand transportation services possible, which created additional opportunities, but also more complexity to urban mobility. Companies that offer these services are called Transportation Network Co mpanies (TNCs) due to their internet-based nature. Although ride-sourcing is the most notorious service TNCs provide, little is known about to what degree its operations can interfere in traffic conditions, while replacing other transportation modes, or when a large number of idle vehicles is cruising for passengers. We experimentally analyze the efficiency of TNCs using taxi trip data from a Chinese megacity and a agent-based simulation with a trip-based MFD model for determining the speed. We investigate the effect of expanding fleet sizes for TNCs, passengers inclination towards sharing rides, and strategies to alleviate urban congestion. We show that the lack of coordination of objectives between TNCs and society can create 37% longer travel times and significant congestion. Moreover, allowing shared rides is not capable of decreasing total distance traveled due to higher empty kilometers traveled. Elegant parking management strategies can prevent idle vehicles from cruising without assigned passengers and lower to 7% the impacts of the absence of coordination.
The novel coronavirus disease (COVID-19) has rapidly spread around the globe in 2020, with the U.S. becoming the epicenter of COVID-19 cases since late March. As the U.S. begins to gradually resume economic activity, it is imperative for policymakers and power system operators to take a scientific approach to understanding and predicting the impact on the electricity sector. Here, we release a first-of-its-kind cross-domain open-access data hub, integrating data from across all existing U.S. wholesale electricity markets with COVID-19 case, weather, cellular location, and satellite imaging data. Leveraging cross-domain insights from public health and mobility data, we uncover a significant reduction in electricity consumption across that is strongly correlated with the rise in the number of COVID-19 cases, degree of social distancing, and level of commercial activity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا