ترغب بنشر مسار تعليمي؟ اضغط هنا

How Epidemic Psychology Works on Twitter: Evolution of responses to the COVID-19 pandemic in the U.S

114   0   0.0 ( 0 )
 نشر من قبل Luca Maria Aiello
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Disruptions resulting from an epidemic might often appear to amount to chaos but, in reality, can be understood in a systematic way through the lens of epidemic psychology. According to Philip Strong, the founder of the sociological study of epidemic infectious diseases, not only is an epidemic biological; there is also the potential for three psycho-social epidemics: of fear, moralization, and action. This work empirically tests Strongs model at scale by studying the use of language of 122M tweets related to the COVID-19 pandemic posted in the U.S. during the whole year of 2020. On Twitter, we identified three distinct phases. Each of them is characterized by different regimes of the three psycho-social epidemics. In the refusal phase, users refused to accept reality despite the increasing number of deaths in other countries. In the anger phase (started after the announcement of the first death in the country), users fear translated into anger about the looming feeling that things were about to change. Finally, in the acceptance phase, which began after the authorities imposed physical-distancing measures, users settled into a new normal for their daily activities. Overall, refusal of accepting reality gradually died off as the year went on, while acceptance increasingly took hold. During 2020, as cases surged in waves, so did anger, re-emerging cyclically at each wave. Our real-time operationalization of Strongs model is designed in a way that makes it possible to embed epidemic psychology into real-time models (e.g., epidemiological and mobility models).



قيم البحث

اقرأ أيضاً

COVID-19 has resulted in a worldwide pandemic, leading to lockdown policies and social distancing. The pandemic has profoundly changed the world. Traditional methods for observing these historical events are difficult because sending reporters to are as with many infected people can put the reporters lives in danger. New technologies are needed for safely observing responses to these policies. This paper reports using thousands of network cameras deployed worldwide for the purpose of witnessing activities in response to the policies. The network cameras can continuously provide real-time visual data (image and video) without human efforts. Thus, network cameras can be utilized to observe activities without risking the lives of reporters. This paper describes a project that uses network cameras to observe responses to governments policies during the COVID-19 pandemic (March to April in 2020). The project discovers over 30,000 network cameras deployed in 110 countries. A set of computer tools are created to collect visual data from network cameras continuously during the pandemic. This paper describes the methods to discover network cameras on the Internet, the methods to collect and manage data, and preliminary results of data analysis. This project can be the foundation for observing the possible second wave in fall 2020. The data may be used for post-pandemic analysis by sociologists, public health experts, and meteorologists.
An infodemic is an emerging phenomenon caused by an overabundance of information online. This proliferation of information makes it difficult for the public to distinguish trustworthy news and credible information from untrustworthy sites and non-cre dible sources. The perils of an infodemic debuted with the outbreak of the COVID-19 pandemic and bots (i.e., automated accounts controlled by a set of algorithms) that are suspected of spreading the infodemic. Although previous research has revealed that bots played a central role in spreading misinformation during major political events, how bots behaved during the infodemic is unclear. In this paper, we examined the roles of bots in the case of the COVID-19 infodemic and the diffusion of non-credible information such as 5G and Bill Gates conspiracy theories and content related to Trump and WHO by analyzing retweet networks and retweeted items. We show the segregated topology of their retweet networks, which indicates that right-wing self-media accounts and conspiracy theorists may lead to this opinion cleavage, while malicious bots might favor amplification of the diffusion of non-credible information. Although the basic influence of information diffusion could be larger in human users than bots, the effects of bots are non-negligible under an infodemic situation.
We investigate predictors of anti-Asian hate among Twitter users throughout COVID-19. With the rise of xenophobia and polarization that has accompanied widespread social media usage in many nations, online hate has become a major social issue, attrac ting many researchers. Here, we apply natural language processing techniques to characterize social media users who began to post anti-Asian hate messages during COVID-19. We compare two user groups -- those who posted anti-Asian slurs and those who did not -- with respect to a rich set of features measured with data prior to COVID-19 and show that it is possible to predict who later publicly posted anti-Asian slurs. Our analysis of predictive features underlines the potential impact of news media and information sources that report on online hate and calls for further investigation into the role of polarized communication networks and news media.
In confronting the global spread of the coronavirus disease COVID-19 pandemic we must have coordinated medical, operational, and political responses. In all efforts, data is crucial. Fundamentally, and in the possible absence of a vaccine for 12 to 1 8 months, we need universal, well-documented testing for both the presence of the disease as well as confirmed recovery through serological tests for antibodies, and we need to track major socioeconomic indices. But we also need auxiliary data of all kinds, including data related to how populations are talking about the unfolding pandemic through news and stories. To in part help on the social media side, we curate a set of 2000 day-scale time series of 1- and 2-grams across 24 languages on Twitter that are most important for April 2020 with respect to April 2019. We determine importance through our allotaxonometric instrument, rank-turbulence divergence. We make some basic observations about some of the time series, including a comparison to numbers of confirmed deaths due to COVID-19 over time. We broadly observe across all languages a peak for the language-specific word for virus in January 2020 followed by a decline through February and then a surge through March and April. The worlds collective attention dropped away while the virus spread out from China. We host the time series on Gitlab, updating them on a daily basis while relevant. Our main intent is for other researchers to use these time series to enhance whatever analyses that may be of use during the pandemic as well as for retrospective investigations.
The Covid-19 pandemic has had a deep impact on the lives of the entire world population, inducing a participated societal debate. As in other contexts, the debate has been the subject of several d/misinformation campaigns; in a quite unprecedented fa shion, however, the presence of false information has seriously put at risk the public health. In this sense, detecting the presence of malicious narratives and identifying the kinds of users that are more prone to spread them represent the first step to limit the persistence of the former ones. In the present paper we analyse the semantic network observed on Twitter during the first Italian lockdown (induced by the hashtags contained in approximately 1.5 millions tweets published between the 23rd of March 2020 and the 23rd of April 2020) and study the extent to which various discursive communities are exposed to d/misinformation arguments. As observed in other studies, the recovered discursive communities largely overlap with traditional political parties, even if the debated topics concern different facets of the management of the pandemic. Although the themes directly related to d/misinformation are a minority of those discussed within our semantic networks, their popularity is unevenly distributed among the various discursive communities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا