ترغب بنشر مسار تعليمي؟ اضغط هنا

Temperature dependence of the topological phase transition of BiTeI from first principles

71   0   0.0 ( 0 )
 نشر من قبل V\\'eronique Brousseau-Couture
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A topological phase transition from a trivial insulator to a $mathbb{Z}_2$ topological insulator requires the bulk band gap to vanish. In the case of noncentrosymmetric materials, these phases are separated by a gapless Weyl semimetal phase. However, at finite temperature, the gap is affected by atomic motion, through electron-phonon interaction, and by thermal expansion of the lattice. As a consequence, the phase space of topologically nontrivial phases is affected by temperature. In this paper, the pressure and temperature dependence of the indirect band gap of BiTeI is investigated from first principles. We evaluate the contribution from both electron-phonon interaction and thermal expansion, and show that their combined effect drives the topological phase transition towards higher pressures with increasing temperature. Notably, we find that the sensitivity of both band extrema to pressure and topology for electron-phonon interaction differs significantly according to their leading orbital character. Our results indicate that the Weyl semimetal phase width is increased by temperature, having almost doubled by 100 K when compared to the static lattice results. Our findings thus provide a guideline for experimental detection of the nontrivial phases of BiTeI and illustrate how the phase space of the Weyl semimetal phase in noncentrosymmetric materials can be significantly affected by temperature.

قيم البحث

اقرأ أيضاً

We investigate the possibility of using structural disorder to induce a topological phase in a solid state system. Using first-principles calculations, we introduce structural disorder in the trivial insulator BiTeI and observe the emergence of a top ological insulating phase. By modifying the bonding environments, the crystal-field splitting is enhanced and the spin-orbit interaction produces a band inversion in the bulk electronic structure. Analysis of the Wannier charge centers and the surface electronic structure reveals a strong topological insulator with Dirac surface states. Finally, we propose a prescription for inducing topological states from disorder in crystalline materials. Understanding how local environments produce topological phases is a key step for predicting disordered and amorphous topological materials.
We investigate the temperature-pressure phase diagram of BaTiO_3 using a first-principles effective-Hamiltonian approach. We find that the zero-point motion of the ions affects the form of the phase diagram dramatically. Specifically, when the zero-p oint fluctuations are included in the calculations, all the polar (tetragonal, orthorhombic, and rhombohedral) phases of BaTiO_3 survive down to 0 K, while only the rhombohedral phase does otherwise. We provide a simple explanation for this behavior. Our results confirm the essential correctness of the phase diagram proposed by Ishidate et al. (Phys. Rev. Lett. 78, 2397 (1997)).
78 - Z. A. Ibrahim 2007
A novel approach has been developed to calculate the temperature dependence of the optical response of a semiconductor. The dielectric function is averaged over several thermally perturbed configurations that are extracted from molecular dynamic simu lations. The calculated temperature dependence of the imaginary part of the dielectric function of GaAs is presented in the range from 0 to 700 K. This approach that explicitly takes into account lattice vibrations describes well the observed thermally-induced energy shifts and broadening of the dielectric function.
We have given a summary on our theoretical predictions of three kinds of topological semimetals (TSMs), namely, Dirac semimetal (DSM), Weyl semimetal (WSM) and Node-Line Semimetal (NLSM). TSMs are new states of quantum matters, which are different wi th topological insulators. They are characterized by the topological stability of Fermi surface, whether it encloses band crossing point, i.e., Dirac cone like energy node, or not. They are distinguished from each other by the degeneracy and momentum space distribution of the nodal points. To realize these intriguing topological quantum states is quite challenging and crucial to both fundamental science and future application. In 2012 and 2013, Na$_3$Bi and Cd$_3$As$_2$ were theoretically predicted to be DSM, respectively. Their experimental verifications in 2014 have ignited the hot and intensive studies on TSMs. The following theoretical prediction of nonmagnetic WSM in TaAs family stimulated a second wave and many experimental works have come out in this year. In 2014, a kind of three dimensional crystal of carbon has been proposed to be NLSM due to negligible spin-orbit coupling and coexistence of time-reversal and inversion symmetry. Though the final experimental confirmation of NLSM is still missing, there have been several theoretical proposals, including Cu$_3$PdN from us. In the final part, we have summarized the whole family of TSMs and their relationship.
The properties of newly discovered polar ScFeO3 with magnetic ordering are examined using Ab initio calculations and symmetry mode analysis. The GGA+U calculation confirms the stability of polar R3c Phase in ScFeO3 and the pressure induced phase tran sition to non-polar Pnma phase. Octahedron tilting and structural properties as a function of applied pressure have been analyzed. The origin of polar phase is associated with instability of non-polar R-3c phase and group theory using the symmetry mode analysis has been applied to understand this instability as well as the spontaneous polarization of polar R3c phase. The magnetic phase transition shows G-type AFM ordering of Fe3+ ion within Goodenough-Kanamori theory and the possibility of magnetic spin structure has been analyzed by using energy analysis including spin canting possibility.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا