ﻻ يوجد ملخص باللغة العربية
We have given a summary on our theoretical predictions of three kinds of topological semimetals (TSMs), namely, Dirac semimetal (DSM), Weyl semimetal (WSM) and Node-Line Semimetal (NLSM). TSMs are new states of quantum matters, which are different with topological insulators. They are characterized by the topological stability of Fermi surface, whether it encloses band crossing point, i.e., Dirac cone like energy node, or not. They are distinguished from each other by the degeneracy and momentum space distribution of the nodal points. To realize these intriguing topological quantum states is quite challenging and crucial to both fundamental science and future application. In 2012 and 2013, Na$_3$Bi and Cd$_3$As$_2$ were theoretically predicted to be DSM, respectively. Their experimental verifications in 2014 have ignited the hot and intensive studies on TSMs. The following theoretical prediction of nonmagnetic WSM in TaAs family stimulated a second wave and many experimental works have come out in this year. In 2014, a kind of three dimensional crystal of carbon has been proposed to be NLSM due to negligible spin-orbit coupling and coexistence of time-reversal and inversion symmetry. Though the final experimental confirmation of NLSM is still missing, there have been several theoretical proposals, including Cu$_3$PdN from us. In the final part, we have summarized the whole family of TSMs and their relationship.
Phonon Hall effect (PHE) has attracted a lot of attention in recent years with many theoretical and experimental explorations published. While experiments work on complicated materials, theoretical studies are still hovering around the phenomenon-bas
Two-dimensional (2D) multiferroics exhibit cross-control capacity between magnetic and electric responses in reduced spatial domain, making them well suited for next-generation nanoscale devices; however, progress has been slow in developing material
We report a systematic first-principles investigation of the influence of different magnetic insulators on the magnetic proximity effect induced in graphene. Four different magnetic insulators are considered: two ferromagnetic europium chalcogenides
We present calculations for electronic and magnetic properties of surface states confined by a circular quantum corral built of magnetic adatoms (Fe) on a Cu(111) surface. We show the oscillations of charge and magnetization densities within the corr
The field of two-dimensional topological semimetals, which emerged at the intersection of two-dimensional materials and topological materials, have been rapidly developing in recent years. In this article, we briefly review the progress in this field