ﻻ يوجد ملخص باللغة العربية
This work proposes a new challenge set for multimodal classification, focusing on detecting hate speech in multimodal memes. It is constructed such that unimodal models struggle and only multimodal models can succeed: difficult examples (benign confounders) are added to the dataset to make it hard to rely on unimodal signals. The task requires subtle reasoning, yet is straightforward to evaluate as a binary classification problem. We provide baseline performance numbers for unimodal models, as well as for multimodal models with various degrees of sophistication. We find that state-of-the-art methods perform poorly compared to humans (64.73% vs. 84.7% accuracy), illustrating the difficulty of the task and highlighting the challenge that this important problem poses to the community.
In the past few years, there has been a surge of interest in multi-modal problems, from image captioning to visual question answering and beyond. In this paper, we focus on hate speech detection in multi-modal memes wherein memes pose an interesting
Hateful memes pose a unique challenge for current machine learning systems because their message is derived from both text- and visual-modalities. To this effect, Facebook released the Hateful Memes Challenge, a dataset of memes with pre-extracted te
Hateful and offensive content detection has been extensively explored in a single modality such as text. However, such toxic information could also be communicated via multimodal content such as online memes. Therefore, detecting multimodal hateful c
Propaganda can be defined as a form of communication that aims to influence the opinions or the actions of people towards a specific goal; this is achieved by means of well-defined rhetorical and psychological devices. Propaganda, in the form we know
Internet memes have become powerful means to transmit political, psychological, and socio-cultural ideas. Although memes are typically humorous, recent days have witnessed an escalation of harmful memes used for trolling, cyberbullying, and abusing s