ﻻ يوجد ملخص باللغة العربية
Hateful memes pose a unique challenge for current machine learning systems because their message is derived from both text- and visual-modalities. To this effect, Facebook released the Hateful Memes Challenge, a dataset of memes with pre-extracted text captions, but it is unclear whether these synthetic examples generalize to `memes in the wild. In this paper, we collect hateful and non-hateful memes from Pinterest to evaluate out-of-sample performance on models pre-trained on the Facebook dataset. We find that memes in the wild differ in two key aspects: 1) Captions must be extracted via OCR, injecting noise and diminishing performance of multimodal models, and 2) Memes are more diverse than `traditional memes, including screenshots of conversations or text on a plain background. This paper thus serves as a reality check for the current benchmark of hateful meme detection and its applicability for detecting real world hate.
This work proposes a new challenge set for multimodal classification, focusing on detecting hate speech in multimodal memes. It is constructed such that unimodal models struggle and only multimodal models can succeed: difficult examples (benign confo
Propaganda can be defined as a form of communication that aims to influence the opinions or the actions of people towards a specific goal; this is achieved by means of well-defined rhetorical and psychological devices. Propaganda, in the form we know
In the past few years, there has been a surge of interest in multi-modal problems, from image captioning to visual question answering and beyond. In this paper, we focus on hate speech detection in multi-modal memes wherein memes pose an interesting
The increasing pervasiveness of social media creates new opportunities to study human social behavior, while challenging our capability to analyze their massive data streams. One of the emerging tasks is to distinguish between different kinds of acti
Hateful and offensive content detection has been extensively explored in a single modality such as text. However, such toxic information could also be communicated via multimodal content such as online memes. Therefore, detecting multimodal hateful c